Ayan Dutta

Learn More
Plant receptor-like kinases (RLKs) share their evolutionary origin with animal interleukin-1 receptor-associated kinase (IRAK)/Pelle family of soluble kinases and are distinguished by having tyrosine as 'gatekeeper'. This position is adjacent to the hinge region and is hidden in a hydrophobic pocket of the catalytic cleft of protein kinases and is therefore(More)
This paper proposes a distributed algorithm for circle formation by multiple autonomous mobile robots with limited visibility. Each robot sees up to a fixed distance around it and moves to a new position. Eventually they form a circle of a given radius. The robots do not store past actions. The robots are anonymous and cannot be distinguished by their(More)
This paper proposes a distributed algorithm for circle formation by a system of mobile robots. Each robot observes the positions of other robots and moves to a new position. Eventually they form a circle. The robots do not store past actions. They are anonymous and cannot be distinguished by their appearance and do not have a common coordinate system(More)
We consider the problem of reconfiguration planning in modular robots. Current techniques for reconfiguration planning usually specify the destination configuration for a modular robot explicitly. We posit that in uncertain environments the desirable configuration for a modular robot is not known beforehand and has to be determined dynamically. In this(More)
Symbiosis Receptor Kinase (SYMRK), a member of the Nod factor signaling pathway, is indispensible for both nodule organogenesis and intracellular colonization of symbionts in rhizobia-legume symbiosis. Here, we show that the intracellular kinase domain of a SYMRK (SYMRK-kd) but not its inactive or full-length version leads to hyperactivation of the nodule(More)
We consider the configuration formation problem in modular robotic systems where a set of singleton modules that are spatially distributed in an environment are required to assume appropriate positions so that they can configure into a new, user-specified target configuration, while simultaneously maximizing the amount of information collected while(More)