Ayako Yajima

Learn More
Porphyromonas gingivalis is a pathogen associated with adult periodontitis, which is a chronic inflammatory disease characterized by breakdown of the periodontal tissue. Dipeptidyl aminopeptidase IV (DPPIV) produced by P. gingivalis has been considered to be a potential virulence factor based on the finding that the virulence was reduced by disruption of(More)
Bacterial recognition of host sialic acid-containing receptors plays an important role in microbial colonization of the human oral cavity. The sialic acid-binding adhesin of Streptococcus gordonii DL1 was previously associated with the hsa gene encoding a 203-kDa protein. The predicted protein sequence consists of an N-terminal nonrepetitive region (NR1),(More)
Phosphoglucosamine mutase (GlmM; EC 5.4.2.10) catalyzes the interconversion of glucosamine-6-phosphate to glucosamine-1-phosphate, an essential step in the biosynthetic pathway leading to the formation of the peptidoglycan precursor uridine 5'-diphospho-N-acetylglucosamine. We have recently identified the gene (glmM) encoding the enzyme of Streptococcus(More)
Porphyromonas gingivalis is a major pathogen associated with adult periodontitis. We cloned and sequenced the gene (dpp) coding for dipeptidyl aminopeptidase IV (DPPIV) from P. gingivalis W83, based on the amino acid sequences of peptide fragments derived from purified DPPIV. An Escherichia coli strain overproducing P. gingivalis DPPIV was constructed. The(More)
Aggregation of human platelets by Streptococcus gordonii DL1, an interaction implicated in the pathogenesis of infective endocarditis, requires the expression of hsa, the gene encoding the sialic acid-binding adhesin (Hsa) of this organism. To identify the sialoglycoproteins on the platelet surface as the receptors for Hsa, intrinsic membrane proteins were(More)
Infective endocarditis is frequently attributed to oral streptococci. The mechanisms of pathogenesis, however, are not well understood, although interaction between streptococci and phagocytes are thought to be very important. A highly expressed surface component of Streptococcus gordonii, Hsa, which has sialic acid-binding activity, contributes to(More)
Bacterial recognition of host sialic acid-containing receptors plays an important role in microbial colonization of the human oral cavity. The aggregation of human platelets by Streptococcus gordonii DL1 is implicated in the pathogenesis of infective endocarditis. In addition, we consider that hemagglutination of this organism may act as an additive factor(More)
Porphyromonas gingivalis is a pathogen associated with adult periodontitis. It produces dipeptidyl aminopeptidase IV (DPPIV), which may act as a virulence factor by contributing to the degradation of connective tissue. We investigated the molecular mechanism by which DPPIV contributes to the destruction of connective tissue. DPPIV itself did not show(More)
Phosphoglucosamine mutase (EC 5.4.2.10) catalyzes the interconversion of glucosamine-6-phosphate into glucosamine-1-phosphate, an essential step in the biosynthetic pathway leading to the formation of peptidoglycan precursor uridine 5'-diphospho-N-acetylglucosamine. The gene (glmM) of Escherichia coli encoding the enzyme has been identified previously. We(More)
Infective endocarditis is frequently attributed to oral streptococci. Although the pathogenetic mechanisms are not well understood, interaction between streptococci and phagocytes is thought to be important for infective endocarditis. In this study, HL-60 cell-derived monocytes were characterized following interaction with Streptococcus gordonii DL1.(More)