Ayako Okazaki

Learn More
BACKGROUND Optogenetic techniques using light-driven ion channels or ion pumps for controlling excitable cells have greatly facilitated the investigation of nervous systems in vivo. A model organism, C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. METHODOLOGY/PRINCIPAL(More)
Recent development of optogenetic techniques, which utilize light-driven ion channels or ion pumps for controlling the activity of excitable cells, has greatly facilitated the investigation of nervous systems in vivo. A new generation of optical silencers includes outward-directed proton pumps, such as Arch, which have several advantages over currently(More)
Ion-transporting rhodopsins are widely utilized as optogenetic tools both for light-induced neural activation and silencing. The most studied representative is Bacteriorhodopsin (BR), which absorbs green/red light (∼570 nm) and functions as a proton pump. Upon photoexcitation, BR induces a hyperpolarization across the membrane, which, if incorporated into a(More)
Application of novel light-driven ion channel/pumps would benefit optogenetic studies of Caenorhabditis elegans. A recent study showed that ArchT, a novel light-driven outward proton pump, is >3 times more light-sensitive than the Arch proton pump. Here we report the silencing effect of ArchT in C. elegans cells. ArchT expressed by using a body-wall muscle(More)
Using four cultured cell models representing liver, keratinocyte, and osteoblast, we have demonstrated that the vitamin D analog, 22-oxacalcitriol is degraded into a variety of hydroxylated and side chain truncated metabolites. Four of these metabolic products have been rigorously identified by high pressure liquid chromatography, diode array(More)
  • 1