Ayako Fujieda

Learn More
In addition to their stimulating function on osteoclastic bone resorption, bone resorptive factors may regulate proteinases and related factors in osteoblastic cells to degrade bone matrix proteins. This study investigated the regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) by bone resorptive factors in the(More)
Skeletal resistance to parathyroid hormone (PTH) is well known to the phenomenon in chronic renal failure patient, but the detailed mechanism has not been elucidated. In the process of analyzing an animal model of renal failure with low bone turnover, we demonstrated decreased expression of PTH receptor (PTHR) accompanying renal dysfunction in this model.(More)
BACKGROUND Using a rat model of renal failure with normal parathyroid hormone levels, we had demonstrated previously that bone formation decreased depending on the degree of renal dysfunction, and hypothesized that uraemic toxins (UTx) are associated with the development of low-turnover bone development, complicating renal failure. In this study, focusing(More)
The removal of unmineralized matrix from the bone surface is essential for the initiation of osteoclastic bone resorption because osteoclasts cannot attach to the unmineralized osteoid. Matrix metalloproteinases (MMPs) are known to digest bone matrix. We recently reported that among the MMPs expressed in mouse osteoblastic cells, MMP-13 (collagenase-3) was(More)
BACKGROUND AND PURPOSE Chronic kidney disease (CKD) is a crucial risk factor for cardiovascular disease (CVD), and combined CKD and CVD further increases morbidity and mortality. Here, we investigated effects of AST-120 on oxidative stress and kidney injury using a model of myocardial infarction (MI) in rats. EXPERIMENTAL APPROACH At 10 weeks, male(More)
The yeast MAPKKK Ste11 activates three MAP kinase pathways, including pheromone signaling, osmosensing, and pseudohyphal/invasive growth pathways. We identified two chemical compounds, BTB03006 and GK03225, that suppress growth defects induced by Ste11 activation in diploid yeast cells. BTB03006, but not GK03225, was found to suppress growth defects induced(More)
Background/Aims. Uremic solutes, which are known to be retained in patients with chronic kidney disease, are considered to have deleterious effects on disease progression. Among these uremic solutes, indoxyl sulfate (IS) has been extensively studied, while other solutes have been studied less to state. We conducted a comparative study to examine the(More)
Abnormal bone turnover and mineral metabolism is observed in patients on dialysis. Secondary hyperparathyroidism (SHP) develops in response to mineral metabolism changes accompanying renal failure. As a factor of disease progression, the phenomenon of skeletal resistance to parathyroid hormone (PTH) is observed. With recent advances in the treatment of SHP,(More)
Parathyroid hormone (PTH) increases serum calcium (Ca) by enhancing bone resorption and renal Ca reabsorption. However, detailed mechanisms of enhanced bone resorption by PTH remain to be elucidated. Although PTH has been shown to increase the expression level of osteoblastic matrix metalloproteinase (MMP)-13 in vitro, only limited results are available(More)
Protein-bound polysaccharide-K (PSK) is extracted from Coriolus versicolor (CM101), and is clinically used in combination therapy for gastrointestinal cancer and small cell lung carcinoma. PSK is a biological response modifier (BRM), and its mechanism of action is partly mediated, by modulating host immune systems, such as the activation of immune effector(More)