Ayça Yalçin

Learn More
A primary advantage of label-free detection methods over fluorescent measurements is its quantitative detection capability, since an absolute measure of adsorbed material facilitates kinetic characterization of biomolecular interactions. Interferometric techniques relate the optical phase to biomolecular layer density on the surface, but the conversion(More)
A novel method is proposed for direct detection of DNA hybridization on microarrays. Optical interferometry is used for label-free sensing of biomolecular accumulation on glass surfaces, enabling dynamic detection of interactions. Capabilities of the presented method are demonstrated by high-throughput sensing of solid-phase hybridization of(More)
Various natural hazards such as landslides, avalanches, floods and debris flows can result in enormous property damages and human casualties in Eastern Black Sea region of Turkey. Mountainous topographic character and high frequency of heavy rain are the main factors for landslide occurrence in Ardesen, Rize. For this reason, the main target of the present(More)
The conformation of a three-dimensional polymeric coating (copoly(DMA-NAS-MAPS)) and immobilization and hybridization of DNA strands on the polymer coated surface are investigated. A conformational change, specifically the swelling of the surface adsorbed polymer upon hydration, is quantified in conjunction with the application of this polymer coating for(More)
We demonstrate an accurate, quantitative, and label-free optical technology for high-throughput studies of receptor-ligand interactions, and apply it to TATA binding protein (TBP) interactions with oligonucleotides. We present a simple method to prepare single-stranded and double-stranded DNA microarrays with comparable surface density, ensuring an accurate(More)
A platform for in situ and real-time measurement of protein-induced conformational changes in dsDNA is presented. We combine electrical orientation of surface-bound dsDNA probes with an optical technique to measure the kinetics of DNA conformational changes. The sequence-specific Escherichia coli integration host factor is utilized to demonstrate(More)
The resonant cavity imaging biosensor (RCIB) is an optical technique for detecting molecular binding interactions label free at many locations in parallel that employs an optical resonant cavity for high sensitivity. Near-infrared light centered at 1512.5 nm couples resonantly through a Fabry-Perot cavity constructed from dielectric reflectors (Si/SiO(2)),(More)
We present biological imaging and sensing methods based on optical resonance and interference. In fluorescence microscopy, our nanoscale imaging capability sheds light onto conformational changes of DNA, DNA-protein complexes and polymer coatings on a solid surface. Interference measurements on a layered substrate yield a label-free sensing platform for(More)
  • 1