Axel Schweickert

Learn More
The RNA-binding protein Bicaudal C is an important regulator of embryonic development in C. elegans, Drosophila and Xenopus. In mouse, bicaudal C (Bicc1) mutants are characterized by the formation of fluid-filled cysts in the kidney and by expansion of epithelial ducts in liver and pancreas. This phenotype is reminiscent of human forms of polycystic kidney(More)
Determination of the vertebrate left-right body axis during embryogenesis results in asymmetric development and placement of most inner organs. Although the asymmetric Nodal cascade is conserved in all vertebrates, the mechanism of symmetry breakage has remained controversial. In mammalian and fish embryos, a cilia-driven leftward flow of extracellular(More)
Generation of laterality depends on a pathway which involves the asymmetrically expressed genes nodal, Ebaf, Leftb, and Pitx2. In mouse, node monocilia are required upstream of the nodal cascade. In chick and frog, gap junctions are essential prior to node/organizer formation. It was hypothesized that differential activity of ion channels gives rise to(More)
The larval epidermis of Xenopus is a bilayered epithelium, which is an excellent model system for the study of the development and function of mucosal and mucociliary epithelia. Goblet cells develop in the outer layer while multiciliated cells and ionocytes sequentially intercalate from the inner to the outer layer. Here, we identify and characterise a(More)
In vertebrates, most inner organs are asymmetrically arranged with respect to the main body axis [1]. Symmetry breakage in fish, amphibian, and mammalian embryos depends on cilia-driven leftward flow of extracellular fluid during neurulation [2-5]. Flow induces the asymmetric nodal cascade that governs asymmetric organ morphogenesis and placement [1, 6, 7].(More)
Leftward flow of extracellular fluid breaks the bilateral symmetry of most vertebrate embryos, manifested by the ensuing asymmetric induction of Nodal signaling in the left lateral plate mesoderm (LPM). Flow is generated by rotational beating of polarized monocilia at the posterior notochord (PNC; mammals), Kupffer's vesicle (KV; teleost fish) and the(More)
Vertebrate organ laterality is manifested by the asymmetric morphogenesis and placement of inner organs. Asymmetric induction of the Nodal signaling cascade in the left lateral plate mesoderm (LPM) precedes and is essential for asymmetric organ morphogenesis. While the Nodal cascade is highly conserved, symmetry breakage is considered to vary between the(More)
Vertebrate laterality, which is manifested by asymmetrically placed organs [1], depends on asymmetric activation of the Nodal signaling cascade in the left lateral plate mesoderm [2]. In fish, amphibians, and mammals, a cilia-driven leftward flow of extracellular fluid acts upstream of the Nodal cascade [3-6]. The direct target of flow has remained elusive.(More)
During vertebrate embryogenesis, a left-right axis is established. The heart, associated vessels and inner organs adopt asymmetric spatial arrangements and morphologies. Secreted growth factors of the TGF-beta family, including nodal, lefty-1 and lefty-2, play crucial roles in establishing left-right asymmetries [1] [2] [3]. In zebrafish, nodal signalling(More)
During vertebrate left-right development the homeobox gene Pitx2 serves as a mediator between transient nodal signaling in the left lateral plate mesoderm (l-LPM) and asymmetric organ morphogenesis. Misexpression of Pitx2 in chick and frog led to alteration of organ situs. Here we report the presence of different Pitx2 isoforms in mouse and frog. Pitx2c but(More)