Learn More
During acoustic communication among human beings, emotional information can be expressed both by the propositional content of verbal utterances and by the modulation of speech melody (affective prosody). It is well established that linguistic processing is bound predominantly to the left hemisphere of the brain. By contrast, the encoding of emotional(More)
Aside from spoken language, singing represents a second mode of acoustic (auditory-vocal) communication in humans. As a new aspect of brain lateralization, functional magnetic resonance imaging (fMRI) revealed two complementary cerebral networks subserving singing and speaking. Reproduction of a non-lyrical tune elicited activation predominantly in the(More)
Recent functional MRI (fMRI) studies have revealed an increased task-related activation in older subjects during a variety of cognitive or perceptual tasks, which may signal beneficial compensatory activity to counteract structural and neurochemical changes associated with aging. Under the assumption that incremental movement rates are associated with an(More)
In addition to the propositional content of verbal utterances, significant linguistic and emotional information is conveyed by the tone of speech. To differentiate brain regions subserving processing of linguistic and affective aspects of intonation, discrimination of sentences differing in linguistic accentuation and emotional expressiveness was evaluated(More)
Developmental dyslexia is one of the most common neuropsychological disorders in children and adults. Only few data are available on the pathomechanisms of this specific dysfunction, assuming--among others--that dyslexia might be a disconnection syndrome of anterior and posterior brain regions involved in phonological and orthographic aspects of the reading(More)
Damage to the anterior peri-intrasylvian cortex of the dominant hemisphere may give rise to a fairly consistent syndrome of articulatory deficits in the absence of relevant paresis of orofacial or laryngeal muscles (apraxia of speech, aphemia, or phonetic disintegration). The available clinical data are ambiguous with respect to the relevant lesion site,(More)
BACKGROUND There are few data on the cerebral organization of motor aspects of speech production and the pathomechanisms of dysarthric deficits subsequent to brain lesions and diseases. The authors used fMRI to further examine the neural basis of speech motor control. METHODS AND RESULTS In eight healthy volunteers, fMRI was performed during syllable(More)
Functional imaging studies have delineated a "minimal network for overt speech production", encompassing mesiofrontal structures (supplementary motor area, anterior cingulate gyrus), bilateral pre- and postcentral convolutions, extending rostrally into posterior parts of the inferior frontal gyrus (IFG) of the language-dominant hemisphere, left anterior(More)
Based on clinical and functional imaging data, the left anterior insula has been assumed to support prearticulatory functions of speech motor control such as the "programming" of vocal tract gestures. In order to further elucidate this model, a recent functional magnetic resonance imaging (fMRI) study of our group (Riecker, Ackermann, Wildgruber, Dogil, &(More)
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease of the motor system. Bulbar symptoms such as dysphagia and dysarthria are frequent features of ALS and can result in reductions in life expectancy and quality of life. These dysfunctions are assessed by clinical examination and by use of instrumented methods such as(More)