Learn More
We review the putative functions and malfunctions of proteins encoded by genes mutated in Charcot-Marie-Tooth disease (CMT; inherited motor and sensory neuropathies) in normal and affected peripheral nerves. Some proteins implicated in demyelinating CMT, peripheral myelin protein 22, protein zero (P0), and connexin32 (Cx32/GJB1) are crucial components of(More)
OBJECTIVE Ganglioside-induced differentiation associated-protein 1 (GDAP1) mutations are commonly associated with autosomal recessive Charcot-Marie-Tooth (ARCMT) neuropathy; however, in rare instances, they also lead to autosomal dominant Charcot-Marie-Tooth (ADCMT). We aimed to investigate the frequency of disease-causing heterozygous GDAP1 mutations in(More)
Over the last 15 years, a number of mutations in a variety of genes have been identified that lead to inherited motor and sensory neuropathies (HMSN), also called Charcot-Marie-Tooth disease (CMT). In this review we will focus on the molecular and cellular mechanisms that cause the Schwann cell pathologies observed in dysmyelinating and demyelinating forms(More)
Mutations in dynamin 2 (DNM2) lead to dominant intermediate Charcot-Marie-Tooth neuropathy type B, while a different set of DNM2 mutations cause autosomal dominant centronuclear myopathy. In this study, we aimed to elucidate the disease mechanisms in dominant intermediate Charcot-Marie-Tooth neuropathy type B and to find explanations for the tissue-specific(More)
Polyethylenimine (PEI) is a cationic polymer which can be complexed with DNA. PEI-DNA complexes can be used for in vitro and in vivo gene delivery approaches. The excess of positive surface charges enhances the association of the complex with the plasmamembrane of cells and facilitates their uptake by endocytosis. The intracellular transport pathway from(More)
Mutations in GDAP1 lead to severe forms of the peripheral motor and sensory neuropathy, Charcot-Marie-Tooth disease (CMT), which is characterized by heterogeneous phenotypes, including pronounced axonal damage and demyelination. We show that neurons and Schwann cells express ganglioside-induced differentiation associated protein 1 (GDAP1), which suggest(More)
GTPases of the Rho subfamily are widely involved in the myelination of the vertebrate nervous system. Rho GTPase activity is temporally and spatially regulated by a set of specific guanine nucleotide exchange factors (GEFs). Here, we report that disruption of frabin/FGD4, a GEF for the Rho GTPase cell-division cycle 42 (Cdc42), causes peripheral nerve(More)
Detection and quantification of fluorescently labeled molecules in subcellular compartments is a key step in the analysis of many cell biological processes. Pixel-wise colocalization analyses, however, are not always suitable, because they do not provide object-specific information, and they are vulnerable to noise and background fluorescence. Here we(More)
Mitochondria and peroxisomes can be fragmented by the process of fission. The fission machineries of both organelles share a set of proteins. GDAP1 is a tail-anchored protein of mitochondria and induces mitochondrial fragmentation. Mutations in GDAP1 lead to Charcot-Marie-Tooth disease (CMT), an inherited peripheral neuropathy, and affect mitochondrial(More)
We presently investigated the induction of manganese superoxide dismutase (MnSOD) and nitric oxide synthase (iNOS) mRNA by interleukin-1 beta (IL-1 beta) in insulin-producing RINm5F cells. IL-1 beta induced both mRNAs in parallel, with increased levels detectable after 4 h and further increase at 6 h. Aminoguanidine, a blocker of NO production, did not(More)