Axel Lubk

Learn More
Electron-holographic tomography (EHT), that is, the combination of off-axis electron holography with electron tomography, was successfully applied for the quantitative 3D mapping of electrostatic potentials at the nanoscale. Here we present the first software package (THOMAS) for semi-automated acquisition of holographic tilt series, a prerequisite for(More)
Strain engineering enables modification of the properties of thin films using the stress from the substrates on which they are grown. Strain may be relaxed, however, and this can also modify the properties thanks to the coupling between strain gradient and polarization known as flexoelectricity. Here we have studied the strain distribution inside epitaxial(More)
Domain walls (DWs) substantially influence a large number of applications involving ferroelectric materials due to their limited mobility when shifted during polarization switching. The discovery of greatly enhanced conduction at BiFeO(3) DWs has highlighted yet another role of DWs as a local material state with unique properties. However, the lack of(More)
A model for a new electron-vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees of freedom are accessible by using the corrector lenses of a transmission electron microscope. The vortex(More)
The distribution and movement of charge is fundamental to many physical phenomena, particularly for applications involving nanoparticles, nanostructures, and electronic devices. However, there are very few ways of quantifying charge at the necessary length scale. Here, we show that aberration-corrected electron holography is capable of counting the charge(More)
Tomographic techniques play a crucial role in imaging methods such as transmission electron microscopy (TEM) due to their unique capabilities to reconstruct three-dimensional object information. However, the accuracy of the two standard tomographic reconstruction techniques, the weighted back-projection (W-BP) and the simultaneous iterative reconstruction(More)
The phase problem can be considered as one of the cornerstones of quantum mechanics intimately connected to the detection process and the uncertainty relation. The latter impose fundamental limits on the manifold phase reconstruction schemes invented to date, in particular, at small magnitudes of the quantum wave. Here, we show that a rigorous solution of(More)
For the characterization of light materials using transmission electron microscopy, a low electron acceleration voltage of 80 kV or even 60 kV is attractive due to reduced beam damage to the specimen. The concomitant reduction in resolving power of the microscope can be restored when using spherical aberration (C(s) ) correctors, which for the most part are(More)
The performance of ferroelectric devices, for example, the ferroelectric field effect transistor, is reduced by the presence of crystal defects such as edge dislocations. For example, it is well-known that edge dislocations play a crucial role in the formation of ferroelectric dead-layers at interfaces and hence finite size effects in ferroelectric thin(More)