Learn More
Cells must be able to process multiple information in parallel and, moreover, they must also be able to combine this information in order to trigger the appropriate response. This is achieved by wiring signalling pathways such that they can interact with each other, a phenomenon often called crosstalk. In this study, we employ mathematical modelling(More)
BACKGROUND Eukaryotic cells have evolved various response mechanisms to counteract the deleterious consequences of oxidative stress. Among these processes, metabolic alterations seem to play an important role. RESULTS We recently discovered that yeast cells with reduced activity of the key glycolytic enzyme triosephosphate isomerase exhibit an increased(More)
Mitochondrial morphology is regulated in many cultured eukaryotic cells by fusion and fission of mitochondria. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. During ageing, mitochondria are undergoing significant changes on the functional and morphological level. The effect(More)
the effect of methylglyoxal (MG) metabolism on growth and lifespan in P. anserina [1]. Methylglyoxal (2-oxopropanal) is generated enzymatically by three types of enzymes (methylglyoxal synthase, cytochrome P450 isozyme and amine oxidase) and non-enzymatically as a side product of glycolysis from dihydroxyacetone phosphate and glyceraldehyde-3-phosphat. MG(More)
Using the UNIarray® marker technology platform, cerebrospinal fluid immunoglobulin G reactivities of 15 controls and 17 RRMS patients against human recombinant proteins were investigated. Patient cerebrospinal fluids were oligoclonal band positive and reactivities were compared to that of sex- and age-matched controls. We hereby aimed at the(More)
The analyses of previously generated Podospora anserina strains in which the mitochondrial superoxide dismutase, PaSOD3, is increased in abundance, revealed unexpected results, which, at first glance, are contradictory to the 'free radical theory of aging' (FRTA). To re-analyze these results, we performed additional experiments and developed a mathematical(More)
The mathematical modeling and description of complex biological processes has become more and more important over the last years. Systems biology aims at the computational simulation of complex systems, up to whole cell simulations. An essential part focuses on solving a large number of parameterized differential equations. However, measuring those(More)
The mitochondrial theory of aging states that the slow accumulation of impaired mitochondria is the driving force of the aging process. In recent years, this theory has gained new support with the discovery of age-related mitochondrial DNA deletions. However, the underlying mechanism of the accumulation of defective mitochondria remained unclear. This has(More)
The understanding and modelling of biological systems relies on the availability of numerical values for physical and chemical properties of biological macro molecules. Kinetic parameters, rate constants, specificities and half-lifes are examples of those properties. This data is mostly published in free text form in scientific journals, which is(More)
Classification into multiple classes when the measured variables are outnumbered is a major methodological challenge in -omics studies. Two algorithms that overcome the dimensionality problem are presented: the forest classification tree (FCT) and the forest support vector machines (FSVM). In FCT, a set of variables is randomly chosen and a classification(More)