Learn More
BACKGROUND Eukaryotic cells have evolved various response mechanisms to counteract the deleterious consequences of oxidative stress. Among these processes, metabolic alterations seem to play an important role. RESULTS We recently discovered that yeast cells with reduced activity of the key glycolytic enzyme triosephosphate isomerase exhibit an increased(More)
Cells must be able to process multiple information in parallel and, moreover, they must also be able to combine this information in order to trigger the appropriate response. This is achieved by wiring signalling pathways such that they can interact with each other, a phenomenon often called crosstalk. In this study, we employ mathematical modelling(More)
Mitochondrial morphology is regulated in many cultured eukaryotic cells by fusion and fission of mitochondria. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. During ageing, mitochondria are undergoing significant changes on the functional and morphological level. The effect(More)
Evolution theory indicates that investment in mechanisms of somatic maintenance and repair is likely to be limited, suggesting that aging may result from the accumulation of unrepaired somatic defects. An important corollary of this hypothesis is that multiple mechanisms of aging operate in parallel. We describe a recently developed "network theory of(More)
Many different theories of ageing have been proposed, based often on highly specific molecular causes. Recent advances in evolutionary theory support the idea that ageing is caused by progressive accumulation of defects, but indicate that multiple processes are likely to operate in parallel. This calls for an understanding of ageing and longevity in terms(More)
the effect of methylglyoxal (MG) metabolism on growth and lifespan in P. anserina [1]. Methylglyoxal (2-oxopropanal) is generated enzymatically by three types of enzymes (methylglyoxal synthase, cytochrome P450 isozyme and amine oxidase) and non-enzymatically as a side product of glycolysis from dihydroxyacetone phosphate and glyceraldehyde-3-phosphat. MG(More)
The analyses of previously generated Podospora anserina strains in which the mitochondrial superoxide dismutase, PaSOD3, is increased in abundance, revealed unexpected results, which, at first glance, are contradictory to the 'free radical theory of aging' (FRTA). To re-analyze these results, we performed additional experiments and developed a mathematical(More)
The mathematical modeling and description of complex biological processes has become more and more important over the last years. Systems biology aims at the computational simulation of complex systems, up to whole cell simulations. An essential part focuses on solving a large number of parameterized differential equations. However, measuring those(More)
Cellular homeostasis and the mechanisms which control homeostasis are important for understanding such fundamental processes as ageing and the origin of life. Several models have studied the importance of accurate protein synthesis for cellular stability, but these models have not considered the complexities of the translation process in any detail. Here we(More)