Learn More
The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy(More)
Membrane-bound receptors often form large assemblies resulting from binding to soluble ligands, cell-surface molecules on other cells and extracellular matrix proteins. For example, the association of membrane proteins with proteins on different cells (trans-interactions) can drive the oligomerization of proteins on the same cell (cis-interactions). A(More)
We develop a statistical thermodynamic model for the phase evolution of DNA-cationic lipid complexes in aqueous solution, as a function of the ratios of charged to neutral lipid and charged lipid to DNA. The complexes consist of parallel strands of DNA intercalated in the water layers of lamellar stacks of mixed lipid bilayers, as determined by recent(More)
The cooperative condensation of DNA and cationic liposomes to form ordered aggregates in aqueous solution is associated with the release of partially bound counterions. We directly determine the extent of counterion release by separating the supernatant from the precipitated condensates, measuring the conductivity of the solution before and after the phase(More)
A comparison between a mean field theory of chain packing in membranes and micelles and Monte Carlo simulations is presented for model lipid bilayers. In both approaches the ''lipids'' are modeled as freely jointed ͑but self-avoiding͒ chains of spherical segments. The first segment of the chain represents the head group, anchored to the bilayer interface by(More)
During cellular migration, regulated actin assembly takes place at the cell leading edge, with continuous disassembly deeper in the cell interior. Actin polymerization at the plasma membrane results in the extension of cellular protrusions in the form of lamellipodia and filopodia. To understand how cells regulate the transformation of lamellipodia into(More)
To model the possible formation of coupled spatial corrugations and charge density modulations in lamellar DNA-lipid complexes, we use a free energy functional which includes the electrostatic, lipid mixing, and elastic degrees of freedom in a self-consistent manner. We find that the balance of forces favors membrane corrugations that are expected to be(More)
We show on general theoretical grounds that the two ends of single-stranded (ss) RNA molecules (consisting of roughly equal proportions of A, C, G and U) are necessarily close together, largely independent of their length and sequence. This is demonstrated to be a direct consequence of two generic properties of the equilibrium secondary structures, namely(More)
We describe a new approach to calculate the binding of flexible peptides and unfolded proteins to multicomponent lipid membranes. The method is based on the transfer matrix formalism of statistical mechanics recently described as a systematic tool to study DNA-protein-drug binding in gene regulation. Using the energies of interaction of the individual(More)