Avinash Parashar

  • Citations Per Year
Learn More
Nanocrystalline silicon thin films were grown using gaseous mixture of 5% silane (SiH4) diluted in hydrogen (H2) and argon (Ar) in a radio frequency (13.56 MHz) plasma enhanced chemical vapor deposition technique. These films were deposited as a function of pressure and were characterized using AFM, Laser Raman, UV-VIS transmission, photoluminescence and(More)
Silicene, a silicon-basedhomologueof graphene, arouses great interest innano-electronic devices due to its outstanding electronic properties.However, its promising electronic applications are greatly hindered by lack of understanding in themechanical strength of silicene. Therefore, in order to design mechanically reliable deviceswith silicene, it is(More)
In this article, molecular dynamics based simulations were carried out to study the tensile behaviour of boron nitride nanosheets (BNNSs). Four different sets of Tersoff potential parameters were used in the simulations for estimating the interatomic interactions between boron and nitrogen atoms. Modifications were incorporated in the Tersoff cut-off(More)
When a solid object is stretched, in general, it shrinks transversely. However, the abnormal ones are auxetic, which exhibit lateral expansion, or negative Poisson ratio. While graphene is a paradigm 2D material, surprisingly, graphene converts from normal to auxetic at certain strains. Here, we show via molecular dynamics simulations that the(More)
Due to their exceptional mechanical properties, thermal conductivity and a wide band gap (5-6 eV), boron nitride nanotubes and nanosheets have promising applications in the field of engineering and biomedical science. Accurate modeling of failure or fracture in a nanomaterial inherently involves coupling of atomic domains of cracks and voids as well as a(More)
Formations of Y and T nano junctions have been observed in boron nitride films deposited on silicon substrates by plasma chemical reaction of diborane (B2H6 diluted in hydrogen) and ammonia (NH3) gases using dual frequency (microwave/radio) plasma enhanced chemical vapor deposition technique without any intentional heating of the substrates. It has been(More)
Graphene is emerging as a versatile material with a diverse field of applications. Synthesis techniques for graphene introduce several topological defects such as vacancies, dislocations and Stone-Thrower-Wales (STW) defects. Among them STW defects are generated without deleting any atom from the lattice position, but are introduced by rotating single C-C(More)
Molecular dynamics-based simulations were performed in conjunction with reactive force-field potential parameters to investigate the effect of crack-edge passivation via hydrogenation on the fracture properties of h-BN nanosheets. In semi-hydrogenated (H is attached to either B or N) and fully hydrogenated (H is attached to both B and N) crack-edge atoms,(More)
Large size h-BN nanosheets are usually polycrystalline in nature and contain different types of grain boundaries. The low angle grain boundaries are usually referred as dislocations. The interaction of dislocations with the defects present in materials may affect the properties of materials. The aim of the current atomistic simulations was to study the(More)
  • 1