Learn More
—Network-on-Chips (NoCs) paradigm is fast becoming a defacto standard for designing communication infrastructure for multicores with the dual goals of reducing power consumption while improving performance. However, research has shown that power consumption and wiring complexity will be two of the major constraints that will hinder the growth of future NoCs(More)
As power dissipation in future Networks-on-Chips (NoCs) is projected to be a major bottleneck, researchers are actively engaged in developing alternate power-efficient technology solutions. Photonic interconnects is a disruptive technology solution that is capable of delivering the communication bandwidth at low power dissipation when the number of cores is(More)
As communication distances and bit rates increase, opto-electronic interconnects are becoming de-facto standard/or designing high-bandwidth low-latency interconnection networks for high performance computing (HPC) systems. While bandwidth scaling with efficient multiplexing techniques (wavelengths, time and space) are available, static assignment of(More)
As Networks-on-Chips (NoCs) continue to become more susceptible to process variation, cross-talk, hard and soft errors with technology scaling to sub-nanometer, there is an urgent need for adaptive Error Correction Coding (ECC) schemes for improving the resiliency of the system. The goal of adaptive ECC schemes should be two fold; decrease power consumption(More)
—With the increasing number of cores in chip mul-tiprocessors, the design of an efficient communication fabric is essential to satisfy the bandwidth and energy requirements of multi-core systems. Scalable Network-on-Chip (NoC) designs are quickly becoming the standard communication framework to replace bus-based networks. However, the conventional metallic(More)
Network-on-Chip (NoC) architectures have been adopted by a growing number of multi-core designs as a flexible and scalable solution to the increasing wire delay constraints in the deep sub-micron regime. However, the shrinking feature size limits the performance of NoCs due to power and area constraints. Research into the optimization of NoCs has shown that(More)
—In this paper, we describe the design and analysis of a scalable architecture suitable for large-scale distributed shared memory (DSM) systems. The approach is based on an interconnect technology which combines optical components and a novel architecture design. In DSM systems, numerous shared memory transactions such as requests, responses and(More)
The limited bandwidth and the increase in power dissipation at longer communication distances and higher bit rates will create a major communication bottleneck in high-performance computing systems (HPCS), affecting not only their performance, but also their scalability. As a solution, we propose an optical-interconnect-based architecture for HPCS called(More)
—As device feature size continues to shrink, reliability becomes a severe issue due to process variation, particle-induced transient errors, and transistor wear-out/stress such as Negative Bias Temperature Instability (NBTI). Unless this problem is addressed, chip multi-processor (CMP) systems face low yields and short meantime to failure (MTTF). This paper(More)