Avinash H. Ambre

Learn More
In this work, novel modified nanoclays were used to mineralize hydroxyapatite (HAP) mimicking biomineralization in bone. This in situ HAPclay was further incorporated into chitosan/polygalacturonic acid (Chi/PgA) scaffolds and films for bone tissue engineering. Differences in microstructure of the scaffolds were observed depending on the changes in(More)
Although liposomes are widely used as carriers of drugs and imaging agents, they suffer from a lack of stability and the slow release of the encapsulated contents at the targeted site. Polymersomes (vesicles of amphiphilic polymers) are considerably more stable compared to liposomes; however, they also demonstrate a slow release for the encapsulated(More)
Significant differences in biochemical parameters between normal and tumor tissues offer an opportunity to chemically design drug carriers which respond to these changes and deliver the drugs at the desired site. For example, overexpression of the matrix metalloproteinase-9 (MMP-9) enzyme in the extracellular matrix of tumor tissues can act as a trigger to(More)
Sodium montmorillonite (Na-MMT) clay was modified with three different unnatural amino acids in order to design intercalated clay structures that may be used for bone biomaterials applications. Prior work on polymer-clay nanocomposites (PCNs) has indicated the effect of the appropriate choice of modifiers on enhancing properties of PCNs. Our X-ray(More)
Although lipid nanoparticles are promising drug delivery vehicles, passive release of encapsulated contents at the target site is often slow. Herein, we report contents release from targeted, polymer-coated, echogenic lipid nanoparticles in the cell cytoplasm by redox trigger and simultaneously enhanced by diagnostic frequency ultrasound. The lipid(More)
Nanoclay modified with unnatural amino acid was used to design a nanoclay-hydroxyapatite (HAP) hybrid by mineralizing HAP in the nanoclay galleries mimicking biomineralization. This hybrid (in situ HAPclay) was used to fabricate polycaprolactone (PCL)/in situ HAPclay films and scaffolds for bone regeneration. Cell culture assays and imaging were used to(More)
Echogenic liposomes (ELIP) are an excellent candidate for concurrent imaging and drug delivery applications. They combine the advantages of liposomes-biocompatibility and ability to encapsulate both hydrophobic and hydrophilic drugs-with strong reflections of ultrasound. The objective of this study is to perform a detailed in vitro acoustic characterization(More)
A simulations driven approach to design of a novel biomaterial nanocomposite system is described in this study. Nanoclays modified with amino acids (OMMT) were used to mineralize hydroxyapatite (HAP), mimicking biomineralization. Representative models of organically modified montmorillonite clay (OMMT) and OMMT-hydroxyapatite (OMMT-HAP) were constructed(More)
  • 1