Avijit Biswas

Learn More
When grown in green light, Fremyella diplosiphon strain UTEX 481 produces the red-colored protein phycoerythrin (PE) to maximize photosynthetic light harvesting. PE is composed of two subunits, CpeA and CpeB, which carry two and three phycoerythrobilin (PEB) chromophores, respectively, that are attached to specific Cys residues via thioether linkages.(More)
Phycobiliproteins are water-soluble, light-harvesting proteins that are highly fluorescent due to linear tetrapyrrole chromophores, which makes them valuable as probes. Enzymes called bilin lyases usually attach these bilin chromophores to specific cysteine residues within the alpha and beta subunits via thioether linkages. A multiplasmid coexpression(More)
Cyanobacterial phycobiliproteins are brilliantly colored due to the presence of covalently attached chromophores called bilins, linear tetrapyrroles derived from heme. For most phycobiliproteins, these post-translational modifications are catalyzed by enzymes called bilin lyases; these enzymes ensure that the appropriate bilins are attached to the correct(More)
The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal(More)
The pathway for phycocyanobilin biosynthesis in Synechococcus sp. strain PCC 7002 comprises two enzymes: heme oxygenase and phycocyanobilin synthase (PcyA). The phycobilin content of cells can be modified by overexpressing genes encoding alternative enzymes for biliverdin reduction. Overexpression of the pebAB and HY2 genes, encoding alternative(More)
The role of thyroid hormones (TH) in the normal functioning of adult mammalian brain is unclear. Our studies have identified synaptosomal Na(+)-K(+)-ATPase as a TH-responsive physiological parameter in adult rat cerebral cortex. L-triiodothyronine (T3) and L-thyroxine (T4) both inhibited Na(+)-K(+)-ATPase activity (but not Mg(2+)-ATPase activity) in similar(More)
Many cyanobacteria use brilliantly pigmented, multisubunit macromolecular structures known as phycobilisomes as antenna to enhance light harvesting for photosynthesis. Recent studies have defined the enzymes that synthesize phycobilin chromophores as well as many of the phycobilin lyase enzymes that attach these chromophores to their cognate apoproteins.(More)
Bilin chromophore attachment to phycobiliproteins is an enzyme-catalyzed post-translational modification process. Bilin-lyases attach a bilin chromophore to their cognate protein through a thioether bond between the chromophore and a cysteine moiety. Bilin chromophores are attached to their phycobiliproteins through the 3(1) carbon of the bilin. Double(More)
Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III).(More)
  • 1