Avigdor Shafferman

Learn More
Structures of recombinant wild-type human acetylcholinesterase and of its E202Q mutant as complexes with fasciculin-II, a 'three-finger' polypeptide toxin purified from the venom of the eastern green mamba (Dendroaspis angusticeps), are reported. The structure of the complex of the wild-type enzyme was solved to 2.8 A resolution by molecular replacement(More)
Yersinia pestis is the causative agent of plague. Previously we have isolated an attenuated Y. pestis transposon insertion mutant in which the pcm gene was disrupted. In the present study, we investigated the expression and the role of pcm locus genes in Y. pestis pathogenesis using a set of isogenic surE, pcm, nlpD and rpoS mutants of the fully virulent(More)
An important virulence strategy evolved by bacterial pathogens to overcome host defenses is the modulation of host cell death. Previous observations have indicated that Yersinia pestis, the causative agent of plague disease, exhibits restricted capacity to induce cell death in macrophages due to ineffective translocation of the type III secretion effector(More)
The presence of a precisely aligned active-site triad (Ser-His-Asp/Glu) in the three-dimensional structures of widely different hydrolytic enzymes has generated intense interest in the chemical modus operandi of this catalytic motif. 1 One hypothesis, which has not received wide acceptance, proposes that the imidazole of the catalytic His is mobile during(More)
Organophosphorus acid anhydride (OP) nerve agents are potent inhibitors which rapidly phosphonylate acetylcholinesterase (AChE) and then may undergo an internal dealkylation reaction (called "aging") to produce an OP-enzyme conjugate that cannot be reactivated. To understand the basis for irreversible inhibition, we solved the structures of aged conjugates(More)
BACKGROUND Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects approximately 8 million annually culminating in approximately 2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of(More)
Francisella tularensis, the etiological agent of the inhalation tularemia, multiplies in a variety of cultured mammalian cells. Nevertheless, evidence for its in vivo intracellular residence is less conclusive. Dendritic cells (DC) that are adapted for engulfing bacteria and migration towards lymphatic organs could serve as potential targets for bacterial(More)
BACKGROUND Francisella tularensis is an intercellular bacterium often causing fatal disease when inhaled. Previous reports have underlined the role of cell-mediated immunity and IFNgamma in the host response to Francisella tularensis infection. METHODOLOGY/PRINCIPAL FINDINGS Here we provide evidence for the involvement of IL-17A in host defense to(More)
The cellular arm of the immune response plays a central role in the defense against intracellular pathogens, such as F. tularensis. To date, whole genome immunoinformatic analyses were limited either to relatively small genomes (e.g. viral) or to preselected subsets of proteins in complex pathogens. Here we present, for the first time, an unbiased bacterial(More)
Pneumonic plague is a fatal disease caused by Yersinia pestis that is associated with a delayed immune response in the lungs. Because neutrophils are the first immune cells recruited to sites of infection, we investigated the mechanisms responsible for their delayed homing to the lung. During the first 24 hr after pulmonary infection with a fully virulent(More)