Learn More
Interfacing neurons with micro- and nano-electronic devices has been a subject of intense study over the last decade. One of the major problems in assembling efficient neuro-electronic hybrid systems is the weak electrical coupling between the components. This is mainly attributed to the fundamental property of living cells to form and maintain an(More)
Current extracellular multisite recordings suffer from low signal-to-noise ratio, limiting the monitoring to action potentials, and preclude detection of subthreshold synaptic potentials. Here we report an approach to induce Aplysia californica neurons to actively engulf protruding microelectrodes, providing 'in-cell recordings' of subthreshold synaptic and(More)
At present, the prime methodology for studying neuronal circuit-connectivity, physiology and pathology under in vitro or in vivo conditions is by using substrate-integrated microelectrode arrays. Although this methodology permits simultaneous, cell-non-invasive, long-term recordings of extracellular field potentials generated by action potentials, it is(More)
Microelectrode arrays increasingly serve to extracellularly record in parallel electrical activity from many excitable cells without inflicting damage to the cells by insertion of microelectrodes. Nevertheless, apart from rare cases they suffer from a low signal to noise ratio. The limiting factor for effective electrical coupling is the low seal resistance(More)
This study demonstrates the use of on-chip gold mushroom-shaped microelectrodes (gMμEs) to generate localized electropores in the plasma membrane of adhering cultured neurons and to electrophysiologically monitor the ensuing membrane repair dynamics. Delivery of an alternating voltage pulse (0.5-1 V, 100 Hz, 300 ms) through an extracellularly positioned(More)
Here we report on the development of a novel neuroelectronic interface consisting of an array of noninvasive gold-mushroom-shaped microelectrodes (gMmicroEs) that practically provide intracellular recordings and stimulation of many individual neurons, while the electrodes maintain an extracellular position. The development of this interface allows(More)
A bioelectronic hybrid system for the detection of acetylcholine esterase (AChE) catalytic activity was assembled by way of immobilizing the enzyme to the gate surface of an ion-sensitive field-effect transistor (ISFET). Photometric methods used to characterize bonded enzyme and linker layers on silicon substrates confirm the existence of a stable(More)
Hai A, Shappir J, Spira ME. Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J Neurophysiol 104: 559–568, 2010. First published April 28, 2010; doi:10.1152/jn.00265.2010. Here we report on the development of a novel neuroelectronic interface consisting of an array of noninvasive(More)
25 Here we report on the development of a novel neuro-electronic interface consisting of an 26 array of noninvasive gold-mushroom-shaped microelectrodes (gMμEs) that practically 27 provide intracellular recordings and stimulation of many individual neurons, while the 28 electrodes maintain an extracellular position. The development of this interface allows(More)
  • 1