Avanti Kulkarni

Learn More
APE1 is the major nuclease for excising abasic (AP) sites and particular 3'-obstructive termini from DNA, and is an integral participant in the base excision repair (BER) pathway. BER capacity plays a prominent role in dictating responsiveness to agents that generate oxidative or alkylation DNA damage, as well as certain chain-terminating nucleoside analogs(More)
XRCC1 is a critical scaffold protein that orchestrates efficient single-strand break repair (SSBR). Recent data has found an association of XRCC1 with proteins causally linked to human spinocerebellar ataxias-aprataxin and tyrosyl-DNA phosphodiesterase 1-implicating SSBR in protection against neuronal cell loss and neurodegenerative disease. We demonstrate(More)
XRCC1 operates as a scaffold protein in base excision repair, a pathway that copes with base and sugar damage in DNA. Studies using recombinant XRCC1 proteins revealed that: a C389Y substitution, responsible for the repair defects of the EM-C11 CHO cell line, caused protein instability; a V86R mutation abolished the interaction with POLbeta, but did not(More)
Neurons are terminally differentiated cells with a high rate of metabolism and multiple biological properties distinct from their undifferentiated precursors. Previous studies showed that nucleotide excision DNA repair is downregulated in postmitotic muscle cells and neurons. Here, we characterize DNA damage susceptibility and base excision DNA repair (BER)(More)
A genetic link between defects in DNA repair and neurological abnormalities has been well established through studies of inherited disorders such as ataxia telangiectasia and xeroderma pigmentosum. In this review, we present a comprehensive summary of the major types of DNA damage, the molecular pathways that function in their repair, and the connection(More)
RecBCD is an ATP-dependent helicase and exonuclease which generates 3' single-stranded DNA (ssDNA) ends used by RecA for homologous recombination. The exonuclease activity is altered when RecBCD encounters a Chi sequence (5'-GCTGGTGG-3') in double-stranded DNA (ds DNA), an event critical to the generation of the 3'-ssDNA. This study tests the effect of(More)
Title of dissertation: LOCATION-SPECIFIC RECOGNITION OF THE RECOMBINATION HOT-SPOT "CHI" (χ) BY THE ESCHERICHIA COLI RECBCD ENZYME. Avanti Kulkarni, Doctor of Philosophy, 2004 Dissertation directed by: Professor Douglas A. Julin Department of Chemistry and Biochemistry RecBCD is an ATP-dependent helicase and exonuclease, which generates 3'single-stranded(More)
  • 1