Aurora Esquela-Kerscher

Learn More
MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that(More)
MicroRNAs play important roles in animal development, cell differentiation, and metabolism and have been implicated in human cancer. The let-7 microRNA controls the timing of cell cycle exit and terminal differentiation in Caenorhabditis elegans and is poorly expressed or deleted in human lung tumors. Here, we show that let-7 is highly expressed in normal(More)
MicroRNAs have been increasingly implicated in human cancer and interest has grown about the potential to use microRNAs to combat cancer. Lung cancer is the most prevalent form of cancer worldwide and lacks effective therapies. Here we have used both in vitro and in vivo approaches to show that the let-7 microRNA directly represses cancer growth in the(More)
In C. elegans, heterochronic genes control the timing of cell fate determination during development. Two heterochronic genes, let-7 and lin-4, encode microRNAs (miRNAs) that down-regulate a third heterochronic gene lin-41 by binding to complementary sites in its 3'UTR. let-7 and lin-4 are conserved in mammals. Here we report the cloning and sequencing of(More)
MicroRNAs (miRNAs) are regulatory molecules that negatively control gene expression by binding to complementary sequences on target mRNAs. The most thoroughly characterized miRNAs, lin-4 and let-7, direct cell fate determination during the larval transitions in C. elegans and act as key regulators of temporal gene expression. lin-4 and let-7 are founding(More)
MicroRNAs (MiRNAs) are a growing class of small non-coding RNAs that exhibit widespread dysregulation in prostate cancer. We profiled miRNA expression in syngeneic human prostate cancer cell lines that differed in their metastatic potential in order to determine their role in aggressive prostate cancer. miR-888 was the most differentially expressed miRNA(More)
MicroRNAs (miRNAs) are important regulators of cell fate determination and homeostasis. Expression of these small RNA genes is tightly regulated during development and in normal tissues, but they are often misregulated in cancer. MiRNA expression is also affected by DNA damaging agents, such as radiation. In particular, mammalian miR-34 is upregulated by(More)
MicroRNAs (miRNAs) are an important class of non-coding small RNAs that possess a large range of biological activities in a variety of organisms and are linked to human diseases such as cancer. Initially, miRNAs were thought to act solely as negative regulators of gene expression and exert their effects by binding to regions within the 3'UTR of their target(More)
The microRNA (miRNA) revolution is upon us. In a few short years, these tiny ∼22-nucleotide RNAs have affected virtually every field of biology and changed the way we view gene regulation. The first miRNA, lin-4, was discovered in the worm Caenorhabditis elegans nearly a decade ago1. This gene was unusual in that it did not encode a protein but rather a(More)
We describe the thirteenth reported case of human infection with Gongylonema spp. in the United States and the first to be confirmed as Gongylonema pulchrum. The parasite described was isolated from the oral cavity of a resident of Williamsburg, Virginia. The identity of the parasite was verified through morphological and genetic approaches, and provided(More)