Aurora Daniela Neagoe

Learn More
The involvement of Ca(2+) in the response to high Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+) was investigated in Saccharomyces cerevisiae. The yeast cells responded through a sharp increase in cytosolic Ca(2+) when exposed to Cd(2+), and to a lesser extent to Cu(2+), but not to Mn(2+), Co(2+), Ni(2+), Zn(2+), or Hg(2+). The response to high(More)
Pho84p, the protein responsible for the high-affinity uptake and transport of inorganic phosphate across the plasma membrane, is also involved in the low-affinity uptake of heavy metals in the Saccharomyces cerevisiae cells. In the present study, the effect of PHO84 overexpression upon the heavy metal accumulation by yeast cells was investigated. As PHO84(More)
The planetary importance of microbial function requires urgently that our knowledge and our exploitation ability is extended, therefore every occasion of bioprospecting is welcome. In this work, bioprospecting is presented from the perspective of the UMBRELLA project, whose main goal was to develop an integral approach for remediation of soil influenced by(More)
We performed an experiment at pot scale to assess the effect of plant growth-promoting bacteria (PGPB) on the development of five plant species grown on a tailing dam substrate. None of the species even germinated on inoculated unamended tailing material, prompting use of compost amendment. The effect of inoculation on the amended material was to increase(More)
Applied research programs in the remediation of contaminated areas can be used also for gaining insights in the physiological and ecological mechanisms supporting the resistance of plant communities in stress conditions due to toxic elements. The research hypothesis of this study was that in the heavily contaminated but nutrient-poor substrate of mine(More)
In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c,(More)
We investigated two Romanian industrial regions- Copşa Mică and Zlatna, to assess the current situation of soil pollution and bioaccumulation of Pb, Cd, Cu and Zn in different vegetable species and possible risks to consumers. Both total and mobile forms of the metals were determined in soil samples, and metal content in the edible parts of root vegetable(More)
Accumulation of heavy metals without developing toxicity symptoms is a phenotype restricted to a small group of plants called hyperaccumulators, whose metal-related characteristics suggested the high potential in biotechnologies such as bioremediation and bioextraction. In an attempt to extrapolate the heavy metal hyperaccumulating phenotype to yeast, we(More)
Lanthanides are a group of non-essential elements with important imaging and therapeutic applications. Although trivalent lanthanide ions (Ln3+) are used as potent blockers of Ca2+ channels, the systematic studies correlating Ln3+ accumulation and toxicity to Ca2+ channel blocking activity are scarce. In this study, we made use of the eukaryotic model(More)
Blueberries (Vaccinium corymbosum L.) are a rich source of antioxidants and their consumption is believed to contribute to food-related protection against oxidative stress. In the present study, the chemoprotective action of blueberry extracts against cadmium toxicity was investigated using a cadmium-hypersensitive strain of Saccharomyces cerevisiae. Four(More)
  • 1