Learn More
In this paper we extend our previous work on the stochastic block model, a commonly used generative model for social and biological networks, and the problem of inferring functional groups or communities from the topology of the network. We use the cavity method of statistical physics to obtain an asymptotically exact analysis of the phase diagram. We(More)
We present an asymptotically exact analysis of the problem of detecting communities in sparse random networks. Our results are also applicable to detection of functional modules, partitions, and colorings in noisy planted models. Using a cavity method analysis, we unveil a phase transition from a region where the original group assignment is undetectable to(More)
We expand the item response theory to study the case of " cheating students " for a set of exams , trying to detect them by applying a greedy algorithm of inference. This extended model is closely related to the Boltzmann machine learning. In this paper we aim to infer the correct biases and interactions of our model by considering a relatively small number(More)
  • 1