Aurélien Drezet

Learn More
Basic optical elements for surface plasmons are fabricated and their functionality (focusing, refraction, and total internal reflection) is demonstrated experimentally. The optical elements consist of dielectric structures of defined geometry on top of a gold film. The working principle of these structures is discussed on the basis of calculated surface(More)
We introduce a point-like scanning single-photon source that operates at room temperature and offers an exceptional photostability (no blinking, no bleaching). This is obtained by grafting in a controlled way a diamond nanocrystal (size around 20 nm) with single nitrogen-vacancy color-center occupancy at the apex of an optical probe. As an application, we(More)
We demonstrate “deterministic” launching of propagative quantum surface-plasmon polaritons at freely chosen positions on gold plasmonic receptacles. This is achieved by using as a plasmon launcher a near-field scanning optical source made of a diamond nanocrystal with two nitrogen-vacancy color-center occupancy. Our demonstration relies on leakage-radiation(More)
Light interacts differently with left and right handed three dimensional chiral objects, like helices, and this leads to the phenomenon known as optical activity. Here, by applying a polarization tomography, we show experimentally, for the first time in the visible domain, that chirality has a different optical manifestation for twisted planar(More)
We report the realization of two-dimensional optical wavelength demultiplexers and multiports for surface plasmons polaritons (SPPs) based on plasmonic crystals, i.e., photonic crystals for SPPs. These SPP elements are built up of lithographically fabricated gold nanostructures on gold thin films. We show by direct imaging of laterally confined SPP beams in(More)
Light diffraction through a subwavelength aperture located at the apex of a metallic screen with conical geometry is investigated theoretically. A method based on a multipole field expansion is developed to solve Maxwell's equations analytically using boundary conditions adapted both for the conical geometry and for the finite conductivity of a real metal.(More)
This paper describes the image formation process in optical leakage radiation microscopy of surface plasmon-polaritons with diffraction limited spatial resolution. The comparison of experimentally recorded images with simulations of point-like surface plasmon-polariton emitters allows for an assignment of the observed fringe patterns. A simple formula for(More)
Linear birefringence, as implemented in wave plates, is a natural way to control the state of polarization of light. We report on a general method for designing miniature planar wave plates using surface plasmons. The resonant optical device considered here is a single circular aperture surrounded by an elliptical antenna grating. The difference between the(More)
We demonstrate orbital angular momentum (OAM) transfer by chiral plasmonic nanostructures designed on both sides of a thin suspended metallic membrane. We show how far-field vortex beams with tunable OAM indices can be tailored through nanostructure designs. We reveal the crucial role played by the central aperture that connects the two sides of the(More)
The present insight into plasmon effects on the nanoscale seems sufficiently advanced to allow the development of surface-plasmon-polariton- (SPP-) based optical devices. Therefore quantitative information describing SPP phenomena is required. We investigate a SPP beam splitter constituted by silver nanoparticles on a silver thin film, fabricated by(More)