Aurélie Jullien

Learn More
The relationship between bone strength and bone mass is well established. The link between trabecular microarchitecture and biomechanical properties has been less extensively explored. To address this question, we have tested the mechanical behaviour of calcaneus bone samples and investigated the correlations between mechanical properties on the one hand,(More)
We take advantage of nonlinear properties associated with chi(3) tensor elements in BaF2 cubic crystal to improve the temporal contrast of femtosecond laser pulses. The technique presented is based on cross-polarized wave (XPW) generation. We have obtained a transmission efficiency of 10% and 10(-10) contrast with an input pulse in the millijoule range.(More)
Calculations are presented for the generation of an isolated attosecond pulse in a multicycle two-color strong-field regime. We show that the recollision of the electron wave packet can be confined to half an optical cycle using pulses of up to 40 fs in duration. The scheme is proven to be efficient using two intense beams, one producing a strong field at(More)
We propose a highly efficient scheme for temporal filters devoted to femtosecond pulse contrast enhancement. The filter is based on cross-polarized wave generation with a spatially suger-Gaussian-shaped beam. In a single nonlinear crystal scheme the energy conversion to the cross-polarized pulse can reach 28%. We demonstrate that the process enables a(More)
We demonstrate compression of amplified carrier-envelope phase (CEP)-stable laser pulses using paired transmission gratings and high-index prisms, or grisms, with chromatic dispersion matching that of a bulk material pulse stretcher. Grisms enable the use of larger bulk stretching factors and thereby higher energy pulses with lower B-integral in a compact(More)
We describe a method that overcomes the observed saturation effect in cross polarized wave (XPW) generation. The previously reported internal efficiencies for XPW generation are known to be limited to around 15% whatever the length of the nonlinear medium and/or the input intensity values are. At the opposite, the theoretical limit had been estimated to be(More)
Nonlinear elliptical polarization rotation is used to improve the contrast of femtosecond pulses by several orders of magnitude. Using nonlinear induced birefringence in air, we produced cleaned pulses with an energy of a few hundreds of microjoules. This technique presents several major advantages, such as convenience and stability of the setup. We(More)
The generation of high contrast and ultrashort laser pulses via a compact and energy-scalable cross polarized wave filter is presented. The setup incorporates a waveguide spatial filter into a single crystal XPW configuration, enabling high energy and high intensity transmission, efficient contrast enhancement and pulse shortening at the multi-mJ level.(More)
The current paradigm of isolated attosecond pulse production requires a few-cycle pulse as the driver for high-harmonic generation that has a cosine-like electric field stabilized with respect to the peak of the pulse envelope. Here, we present simulations and experimental evidence that the production of high-harmonic light can be restricted to one or a few(More)
We report on direct observation of temporal contrast degradation of short pulses amplified by optical parametric chirped-pulse amplification. We show that, despite injection seeding, quantum-noise-induced fast modulations (< 50 ps) of the temporal profile of the pump pulse are imprinted on the spectrum of the amplified chirped pulse and give rise to a large(More)