Learn More
The WalKR two-component system is essential for the viability of Staphylococcus aureus, playing a central role in controlling cell wall metabolism. We produced a constitutively active form of WalR in S. aureus through a phosphomimetic amino acid replacement (WalR(c), D55E). The strain displayed significantly increased biofilm formation and alpha-hemolytic(More)
The GraS/GraR two-component system has been shown to control cationic antimicrobial peptide (CAMP) resistance in the major human pathogen Staphylococcus aureus. We demonstrated that graX, also involved in CAMP resistance and cotranscribed with graRS, encodes a regulatory cofactor of the GraSR signaling pathway, effectively constituting a three-component(More)
Oligopeptides internalized by oligopeptide permease (Opp) transporters play key roles in bacterial nutrition, signaling, and virulence. To date, two opp operons, opp-1 and opp-2, have been identified in Staphylococcus aureus. Systematic in silico analysis of 11 different S. aureus genomes revealed the existence of two new opp operons, opp-3 and opp-4, plus(More)
Two-component systems (TCSs) are key regulatory pathways allowing bacteria to adapt their genetic expression to environmental changes. Bacitracin, a cyclic dodecylpeptide antibiotic, binds to undecaprenyl pyrophosphate, the lipid carrier for cell wall precursors, effectively inhibiting peptidoglycan biosynthesis. We have identified a novel and previously(More)
The GraSR two-component system (TCS) controls cationic antimicrobial peptide (CAMP) resistance in Staphylococcus aureus through the synthesis of enzymes that increase bacterial cell surface positive charges, by d-alanylation of teichoic acids and lysylination of phosphatidylglycerol, leading to electrostatic repulsion of CAMPs. The GraS histidine kinase(More)
Staphylococcus aureus RN6390 presents a diauxic growth in milk, due to amino acid limitation. Inactivation of the oligopeptide permease Opp3 (dedicated to the nitrogen nutrition of the strain) not only affects the growth of the strain but also results in reduced expression levels of three major extracellular proteases.
The oligopeptide transport systems Opp belong to the nickel/peptide/opine PepT subfamily of ABC-transporters. The opportunist pathogen Staphylococcus aureus encodes four putative Opps and one orphean substrate binding protein Opp5A. Here, we report that the Opp2 permease complex (Opp2BCDF) and Opp5A are involved in nickel uptake and then renamed them(More)
Staphylococcus aureus is a major pathogen that colonizes about 20% of the human population. Intriguingly, this Gram-positive bacterium can survive and thrive under a wide range of different conditions, both inside and outside the human body. Here, we investigated the transcriptional adaptation of S. aureus HG001, a derivative of strain NCTC 8325, across(More)
The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC(More)
The fru2 metabolic operon of Streptococcus agalactiae encodes the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) enzyme II complex Fru2 (EIIBFru2 , EIIAFru2 , and EIICFru2 ); Fru2 R, a transcriptional activator with PTS regulatory domains (PRDs); a d-allulose-6-phosphate 3-epimerase; a transaldolase; and a transketolase. We showed that the(More)
  • 1