Audronė Marozienė

Learn More
With an aim to understand the toxicity mechanisms of the explosive 4,6-dinitro- benzofuroxan (DNBF), we studied its single-electron reduction by NADPH:cytochrome P450 reductase and ferredoxin:NADP(+) reductase, and two- electron reduction by DT-diaphorase and Enterobacter cloacae nitroreductase. The enzymatic reactivities of DNBF and another explosive(More)
Strong radical-scavenging activity of Geranium macrorrhizum extracts isolated by using various solvent systems has been reported previously. This study aimed at expanding the knowledge on the bioactivities of antioxidatively active G. macrorrhizum butanol fraction, which was isolated from ethanolic extract (EB), and water fraction, which was isolated from(More)
Flavonoids exhibit prooxidant cytotoxicity in mammalian cells due to the formation of free radicals and oxidation products possessing quinone or quinomethide structure. However, it is unclear how the cytotoxicity of flavonoids depends on the ease of their single-electron oxidation in aqueous medium, i.e., the redox potential of the phenoxyl radical/phenol(More)
UNLABELLED The enzymatic reactivity of a series of benzo[1,2-c]1,2,5-oxadiazole N-oxides (benzofuroxans; BFXs) towards mammalian single-electron transferring NADPH:cytochrome P-450 reductase (P-450R) and two-electron (hydride) transferring NAD(P)H quinone oxidoreductase (NQO1) was examined in this work. Since the =N+ (→O)O- moiety of furoxan fragments of(More)
The geno- and cytotoxicity of chromate, an important environmental pollutant, is partly attributed to the flavoenzyme-catalyzed reduction with the concomitant formation of reactive oxygen species. The aim of this work was to characterize the role of NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC and glutathione reductase (GR, EC
  • 1