Learn More
The peptidoglycan of Thermotoga maritima, an extremely thermophilic eubacterium, was shown to contain no diaminopimelic acid and approximate amounts of both enantiomers of lysine (Huber, R., Langworthy, T. A., König, H., Thomm, M., Woese, C. R., Sleytr, U. B., and Stetter, K. O. (1986) Arch. Microbiol. 144, 324-333). To assess the possible involvement of(More)
The biosynthesis of bacterial cell wall peptidoglycan is a complex process that involves enzyme reactions that take place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner side (synthesis of lipid-linked intermediates) and outer side (polymerization reactions) of the cytoplasmic membrane. This review deals with the cytoplasmic steps(More)
The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His(6)-tagged forms. Their(More)
Pseudomonas entomophila is an entomopathogenic bacterium that is lethal to Drosophila melanogaster within 1-2 days of ingestion of high doses. Flies orally infected with P. entomophila rapidly succumb despite the induction of both local and systemic immune responses. Recent studies suggest that its virulence relies on its ability to cause irreversible(More)
The UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase (murein peptide ligase [Mpl]) is known to be a recycling enzyme allowing reincorporation into peptidoglycan (murein) of the tripeptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate released during the maturation and constant remodeling of this bacterial cell wall polymer that(More)
Thermotoga maritima is a Gram-negative, hyperthermophilic bacterium whose peptidoglycan contains comparable amounts of L- and D-lysine. We have determined the fine structure of this cell-wall polymer. The muropeptides resulting from the digestion of peptidoglycan by mutanolysin were separated by high-performance liquid chromatography and identified by amino(More)
The increasing emergence of pathogenic bacterial strains with high resistance to antibiotic therapy has created an urgent need for the development of new antibacterial agents that are directed towards novel targets. We have focused our attention on the Mur ligases (MurC-F), which catalyze the early steps of bacterial peptidoglycan biosynthesis, and which to(More)
Formation of the peptidoglycan stem pentapeptide requires the insertion of both L and D amino acids by the ATP-dependent ligase enzymes MurC, -D, -E, and -F. The stereochemical control of the third position amino acid in the pentapeptide is crucial to maintain the fidelity of later biosynthetic steps contributing to cell morphology, antibiotic resistance,(More)
The Mur ligases have an essential role in the intracellular biosynthesis of bacterial peptidoglycan, and they represent attractive targets for the design of novel antibacterials. A series of compounds with an N-acylhydrazone scaffold were synthesized and screened for inhibition of the MurC and MurD enzymes from Escherichia coli. Compounds with micromolar(More)
D-Glutamic acid-adding enzyme (MurD ligase) catalyses the addition of D-glutamic acid to UDP-N-acetylmuramoyl-L-alanine, an essential cytoplasmic step in the pathway for bacterial cell-wall peptidoglycan synthesis. As such, it represents an important antibacterial drug-discovery target enzyme. Recently, several series of compounds have been synthesised and(More)