Learn More
In this paper, we propose a computational model of the recognition of real world scenes that bypasses the segmentation and the processing of individual objects or regions. The procedure is based on a very low dimensional representation of the scene, that we term the Spatial Envelope. We propose a set of perceptual dimensions (naturalness, openness,(More)
Scene recognition is one of the hallmark tasks of computer vision, allowing definition of a context for object recognition. Whereas the tremendous recent progress in object recognition tasks is due to the availability of large datasets like ImageNet and the rise of Convolutional Neural Networks (CNNs) for learning high-level features, performance at scene(More)
Scene categorization is a fundamental problem in computer vision. However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories. Whereas standard databases for object categorization contain hundreds of different classes of objects, the largest available(More)
Many experiments have shown that the human visual system makes extensive use of contextual information for facilitating object search in natural scenes. However, the question of how to formally model contextual influences is still open. On the basis of a Bayesian framework, the authors present an original approach of attentional guidance by global scene(More)
In this work, we revisit the global average pooling layer proposed in [13], and shed light on how it explicitly enables the convolutional neural network (CNN) to have remarkable localization ability despite being trained on imagelevel labels. While this technique was previously proposed as a means for regularizing training, we find that it actually builds a(More)
Humans can recognize the gist of a novel image in a single glance, independent of its complexity. How is this remarkable feat accomplished? On the basis of behavioral and computational evidence, this paper describes a formal approach to the representation and the mechanism of scene gist understanding, based on scene-centered, rather than object-centered(More)
Primates are remarkably good at recognizing objects. The level of performance of their visual system and its robustness to image degradations still surpasses the best computer vision systems despite decades of engineering effort. In particular, the high accuracy of primates in ultra rapid object categorization and rapid serial visual presentation tasks is(More)
With the success of new computational architectures for visual processing, such as convolutional neural networks (CNN) and access to image databases with millions of labeled examples (e.g., ImageNet, Places), the state of the art in computer vision is advancing rapidly. One important factor for continued progress is to understand the representations that(More)
The rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach nearhuman semantic classification at tasks such as object and scene recognition. Here we describe the Places Database, a repository of 10 million scene photographs, labeled with scene semantic categories and attributes, comprising a(More)