Atul Vashist

  • Citations Per Year
Learn More
BACKGROUND The DevR(DosR) regulon is implicated in hypoxic adaptation and virulence of Mycobacterium tuberculosis. The present study was designed to decipher the impact of perturbation in DevR-mediated signaling on these properties. METHODOLOGY/PRINCIPAL FINDINGS M. tb complemented (Comp) strains expressing different levels of DevR were constructed in(More)
BACKGROUND The DevR response regulator is implicated in both hypoxic adaptation and virulence of Mycobacterium tuberculosis (M. tb). DevR regulon genes are powerfully induced in vivo implicating them in bacterial adaptation to host control strategies. A better understanding of DevR function will illumine the way for new strategies to control and treat(More)
OBJECTIVE/BACKGROUND Bacterial persistence is the hallmark of tuberculosis (TB) and poses the biggest threat to the success of any antitubercular drug regimen. The DevR/DosR dormancy regulator of Mycobacterium tuberculosis belongs to the NarL subfamily of response regulators and is essential for M. tuberculosis persistence in macaque models of TB. The(More)
The crystal structures of several bacterial response regulators provide insight into the various interdomain molecular interactions potentially involved in maintaining their 'active' or 'inactive' states. However, the requirement of high concentrations of protein, an optimal pH and ionic strength buffers during crystallization may result in a structure(More)
BACKGROUND AND OBJECTIVES The aim of the study is to evaluate the therapeutic efficacy and safety of Yttrium- 90 radiolabelled chimeric anti CD20 antibody-Rituximab in the treatment of patients with relapsed/ refractory B cell Non-Hodgkins Lymphoma (NHL). METHODS Twenty patients with relapsed/refractory CD20+ NHL in progressive state were included in the(More)
The DevR/DosR regulator is believed to play a key role in dormancy adaptation mechanisms of Mycobacterium tuberculosis in response to a multitude of gaseous stresses, including hypoxia, which prevails within granulomas. DevR activates transcription by binding to target promoters containing a minimum of two binding sites. The proximal site overlaps with the(More)
The emergence of injectable hydrogels as biomaterials has been a revolutionary breakthrough in the field of on-demand drug delivery and tissue engineering. The promising features of these systems include their biodegradability, biocompatibility, permeability, ease of the surgical implantation, and most importantly exhibit minimally invasiveness. These(More)
Since centuries, the rapid spread and cure of infectious diseases have been a major concern to the progress and survival of humans. These diseases are a global burden and the prominent cause for worldwide deaths and disabilities. Nanomedicine has emerged as the most excellent tool to eradicate and halt their spread. Various nanoformulations (NFs) using(More)
  • 1