Atul S. Minhas

Learn More
We present the first in vivo cross-sectional conductivity image of the human leg with 1.7 mm pixel size using the magnetic resonance electrical impedance tomography (MREIT) technique. After a review of its experimental protocol by an Institutional Review Board (IRB), we performed MREIT imaging experiments of four human subjects using a 3 T MRI scanner.(More)
Latest experimental results in magnetic resonance electrical impedance tomography (MREIT) demonstrated high-resolution in vivo conductivity imaging of animal and human subjects using imaging currents of 5 to 9 mA. Externally injected imaging currents induce magnetic flux density distributions, which are affected by a conductivity distribution. Since we(More)
Cross-sectional conductivity images of lower extremities were reconstructed using Magnetic Resonance Electrical Impedance Tomography (MREIT) techniques. Carbon-hydrogel electrodes were adopted for postmortem swine and in vivo human imaging experiments. Due to their large surface areas and good contacts on the skin, we could inject as much as 10 mA into the(More)
In this paper, we have shown a simple procedure to detect anomalies in the lungs region by electrical impedance tomography. The main aim of the present study is to investigate the possibility of anomaly detection by using neural networks. Radial basis function neural networks are used as classifiers to classify the anomaly as belonging to the anterior or(More)
A model with its conductivity varying highly across a very thin layer will be considered. It is related to a stable phantom model, which is invented to generate a certain apparent conductivity inside a region surrounded by a thin cylinder with holes. The thin cylinder is an insulator and both inside and outside the thin cylinderare filled with the same(More)
Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical(More)
  • 1