Learn More
A key problem of eukaryotic cell motility is the signaling mechanism of chemoattractant gradient sensing. Recent experiments have revealed the molecular correlate of gradient sensing: Frontness molecules, such as PI3P and Rac, localize at the front end of the cell, and backness molecules, such as Rho and myosin II, accumulate at the back of the cell.(More)
Microbial growth on mixtures of substrates is of considerable engineering and biological interest. Most of the work until now has dealt with microbial growth on binary mixtures of sugars or polyols. In these cases, it is often found that no matter how the inoculum is precultured, only one of the two substrates is consumed in the first growth phase, leading(More)
The crawling movement of cells in response to a chemoattractant gradient is a complex process requiring the coordination of various subcellular activities. Although a complete description of the mechanisms underlying cell movement remains elusive, the very first step of directional sensing, enabling the cell to perceive the imposed gradient, is becoming(More)
The lac operon of Escherichia coli can exhibit bistability. Early studies showed that bistability occurs during growth on TMG/succinate and lactose+glucose, but not during growth on lactose. More recently, studies with lacGFP-transfected cells show bistability during growth on TMG/succinate, but not during growth on lactose and lactose+glucose. In the(More)
The induction of the lac operon follows cooperative kinetics. The first mechanistic model of these kinetics is the de facto standard in the modeling literature [Yagil, G., Yagil, E., 1971. On the relation between effector concentration and the rate of induced enzyme synthesis. Biophys. J. 11, 11-17]. Yet, subsequent studies have shown that the model is(More)
When bacteria are grown in a batch culture containing a mixture of two growth-limiting substrates, they exhibit a rich spectrum of substrate consumption patterns including diauxic growth, simultaneous consumption, and bistable growth. In previous work, we showed that a minimal model accounting only for enzyme induction and dilution captures all the(More)
In the presence of gratuitous inducers, the lac operon of Escherichia coli exhibits bistability. Most models in the literature assume that the inducer enters the cell via the carrier (permease), and exits by a diffusion-like process. The diffusive influx and carrier efflux are neglected. However, analysis of the data shows that in non-induced cells, the(More)
The growth of mixed microbial cultures on mixtures of substrates is a problem of fundamental biological interest. In the last two decades, several unstructured models of mixed-substrate growth have been studied. It is well known, however, that the growth patterns in mixed-substrate environments are dictated by the enzymes that catalyse the transport of(More)
A chemostat limited by a single growth-limiting substrate displays a rich spectrum of dynamics. Depending on the flow rate and feed concentration, the chemostat settles into a steady state or executes sustained oscillations. The transients in response to abrupt increases in the flow rate or the feed concentration are also quite complex. For example, if the(More)