Learn More
Perlecan is a heparan sulfate proteoglycan that is expressed in all basement membranes (BMs), in cartilage, and several other mesenchymal tissues during development. Perlecan binds growth factors and interacts with various extracellular matrix proteins and cell adhesion molecules. Homozygous mice with a null mutation in the perlecan gene exhibit normal(More)
Cyclic guanosine 3',5'-monophosphate (cGMP)-dependent protein kinases (cGKs) mediate cellular signaling induced by nitric oxide and cGMP. Mice deficient in the type II cGK were resistant to Escherichia coli STa, an enterotoxin that stimulates cGMP accumulation and intestinal fluid secretion. The cGKII-deficient mice also developed dwarfism that was caused(More)
Collagen II is a fibril-forming collagen that is mainly expressed in cartilage. Collagen II-deficient mice produce structurally abnormal cartilage that lacks growth plates in long bones, and as a result these mice develop a skeleton without endochondral bone formation. Here, we report that Col2a1-null mice are unable to dismantle the notochord. This defect(More)
The transcriptional regulation of the murine gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was studied by beta-galactosidase histochemistry in transgenic mice carrying fusion genes between progressively longer portions of the 5'-upstream regulatory region of GAD67 and E. coli lacZ. No expression was detected in brains of mice carrying(More)
Integrins are cell-surface receptors responsible for cell attachment to extracellular matrices and to other cells. The application of mouse genetics has significantly increased our understanding of integrin function in vivo. In this review, we summarize the phenotypes of mice carrying mutant integrin genes and compare them with phenotypes of mice lacking(More)
Matrilins are adaptor proteins of the extracellular matrix involved in the formation of both collagen-dependent and collagen-independent filamentous networks. Although their molecular structure and binding partners have been characterized, the functional roles of the four matrilin family members in vivo are still largely unknown. Here, we show that matrilin(More)
The response of a reaction network composed of protein kinase A, calpain, and protein phosphatase to transient cAMP and Ca2+ signals was studied. An essential feature of signal convergence is that the regulatory subunit of cAMP-dissociated protein kinase A undergoes limited proteolysis by the Ca(2+)-activated proteinase calpain. A dynamic model of this(More)
Gene products differentially expressed in healthy vs. diseased tissues may be considered drug targets since the change in their expression level can be related to the cause and progression of the disease studied. A significant portion of the proteins produced by these genes will be unknown and consequently their function must be characterised. The(More)
Calpain activity of nerve growth factor (NGF)-induced rat pheochromocytoma (PC12) cells shows a transient diminution in the early phase of differentiation. Calpain activity can be further decreased by a cell-permeable calpain inhibitor, calpeptin, which enhances the effect of NGF by stimulating neurite elongation. The number of neurites sprouted by one cell(More)