Learn More
Autumnal tints are one of the most fascinating natural phenomena, but the molecular mechanism of chlorophyll (Chl-)degradation in deciduous trees has not been fully understood. In this study, from the leaves of Ginkgo biloba, chlorophyllase-homologous GbCLH was cloned by RT-PCR with degenerated primers. The expression of GbCLH in different yellowing stages(More)
Carnivorous plants acquire substantial amounts of nitrogen from insects. The tropical carnivorous plant Nepenthes produces trapping organs called pitchers at the tips of tendrils elongated from leaf ends. Acidic fluid is secreted at the bottoms of the pitchers. The pitcher fluid includes several hydrolytic enzymes, and some, such as aspartic proteinase, are(More)
Chlorophyllase (Chlase) catalyzes the initial step of chlorophyll (Chl)-degradation, but the physiological significance of this reaction is still ambiguous. Common understanding of its role is that Chlase is involved in de-greening processes such as fruit ripening, leaf senescence, and flowering. But there is a possibility that Chlase is also involved in(More)
In this study, metabolite profiling was demonstrated as a useful tool to plot a specific metabolic pathway, which is regulated by phytochrome A (phyA). Etiolated Arabidopsis wild-type (WT) and phyA mutant seedlings were irradiated with either far-red light (FR) or white light (W). Primary metabolites of the irradiated seedlings were profiled by gas(More)
8-Epi-prostaglandin F2alpha (8-epi-PGF2alpha) is an F2-isoprostane formed mainly via noncyclooxygenase pathways in vivo. We investigated whether 8-epi-PGF2alpha has any effect on airflow obstruction and plasma exudation in vivo. Airflow obstruction was quantified by measuring lung resistance (RL) in anesthetized and ventilated guinea pigs, and plasma(More)
DNA aptamers that bind to hematoporphyrin IX (HPIX) were isolated using an in vitro selection technique. Most aptamers obtained after the 7th and 10th rounds contained guanine-rich sequences. Binding assay using fluorescence polarization technique and structural analysis by CD spectra revealed that the parallel guanine-quartet structure of the aptamer(More)
Lignans are a large class of secondary metabolites in plants, with numerous biological effects in mammals, including antitumor and antioxidant activities. Sesamin, the most abundant furofuran-class lignan in sesame seeds (Sesamum plants), is produced by the cytochrome P450 enzyme CYP81Q1 from the precursor lignan, pinoresinol. In contrast, Forsythia plants(More)
The phytochrome photoreceptors regulate plant growth and development throughout their life cycle. Rice (Oryza sativa) possesses three phytochromes, phyA, phyB, and phyC. Physiological, genetic, and biochemical analyses of null mutants of each phytochrome have revealed the function of each in rice. However, few studies have investigated the relationship(More)
In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray(More)
N-Glycosylation is an important post-translational modification that occurs in many secreted and membrane proteins in eukaryotic cells. Golgi alpha-mannosidase I hydrolases (MANI) are key enzymes that play a role in the early N-glycan modification pathway in the Golgi apparatus. In Arabidopsis thaliana, two putative MANI genes, AtMANIa (At3g21160) and(More)