Atsushi Nishikawa

Learn More
BACKGROUND Due to the small number of patients and differences in the pathologic classification in most radiotherapy series, information regarding the adequacy of tumor control in patients with ocular-adnexal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) is limited. METHODS A multiinstitutional, retrospective study was(More)
Increasing intracellular mannose-6-phosphate (Man-6-P) was previously reported to reduce the amount of the major lipid linked oligosaccharide (LLO) precursor of N-glycans; a loss that might decrease cellular N-glycosylation. If so, providing dietary mannose supplements to glycosylation-deficient patients might further impair their glycosylation. To address(More)
Arthrobacter sp. K-1 β-fructofuranosidase (ArFFase), a glycoside hydrolase family 68 enzyme, catalyzes the hydrolysis and transfructosylation of sucrose. ArFFase is useful for producing a sweetener, lactosucrose (4(G)-β-D-galactosylsucrose). The primary structure of ArFFase is homologous to those of levansucrases, although ArFFase catalyzes mostly(More)
A glucodextranase (iGDase) from Arthrobacter globiformis I42 hydrolyzes alpha-1,6-glucosidic linkages of dextran from the non-reducing end to produce beta-D-glucose via an inverting reaction mechanism and classified into the glycoside hydrolase family 15 (GH15). Here we cloned the iGDase gene and determined the crystal structures of iGDase of the unliganded(More)
Proteins belonging to the glycoside hydrolase family 63 (GH63) are found in bacteria, archaea, and eukaryotes. Eukaryotic GH63 proteins are processing *-glucosidase I enzymes that hydrolyze an oligosaccharide precursor of eukaryotic N-linked glycoproteins. In contrast, the functions of the bacterial and archaeal GH63 proteins are unclear. Here we determined(More)
CD4(+)CD25(+) T cells have immunoregulatory and suppressive functions and are responsible for suppressing self-reactive cells and maintaining self-tolerance. In addition to CD4(+)CD25(+) T cells, there is some evidence that a fraction of CD4(+)CD25(-) T cells exhibit suppressive activity in vitro or in vivo. We have shown, using aged mice, that aging not(More)
A critical role in internalizing the Clostridium botulinum neurotoxin into gastrointestinal cells is played by nontoxic components complexed with the toxin. One of the components, a β-trefoil lectin has been known as HA33 or HA1. The HA33 from C. botulinum type A (HA33/A) has been predicted to have a single sugar-binding site, while type C HA33 (HA33/C) has(More)
The bacterium Clostridium botulinum type C produces a progenitor toxin (C16S toxin) that binds to O-linked sugar chains terminating with sialic acid on the surface of HT-29 cells prior to internalization [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, Biochem. Biophys. Res.(More)
The Clostridium botulinum type C 16S progenitor toxin contains a neurotoxin and several nontoxic components, designated nontoxic nonhemagglutinin (HA), HA1 (HA-33), HA2 (HA-17), HA3a (HA-22-23), and HA3b (HA-53). The HA3b subcomponent seems to play an important role cooperatively with HA1 in the internalization of the toxin by gastrointestinal epithelial(More)
Clostridium botulinum produces the botulinum neurotoxin, forming a large complex as progenitor toxins in association with non-toxic non-hemagglutinin and/or several different hemagglutinin (HA) subcomponents, HA33, HA17 and HA70, which bind to carbohydrate of glycoproteins from epithelial cells in the infection process. To elucidate the carbohydrate(More)