Learn More
Sphingosine 1-phosphate (S1P) is accumulated in lipoproteins, especially high-density lipoprotein (HDL), in plasma. However, it remains uncharacterized how extracellular S1P is produced in the CNS. The treatment of rat astrocytes with retinoic acid and dibutyryl cAMP, which induce apolipoprotein E (apoE) synthesis and HDL-like lipoprotein formation,(More)
OBJECTIVE Plasma high-density lipoprotein (HDL) level is inversely correlated with the risk of atherosclerosis. However, the cellular mechanism by which HDL exerts antiatherogenic actions is not well understood. In this study, we focus on the lipid components of HDL as mediators of the lipoprotein-induced antiatherogenic actions. METHODS AND RESULTS HDL(More)
Malignant ascites from pancreatic cancer patients has been reported to stimulate migration of pancreatic cancer cells through lysophosphatidic acid (LPA) and LPA(1) receptors. Indeed, ascites- and LPA-induced migration was inhibited by Ki16425, an LPA(1) and LPA(3) antagonist, in Panc-1 cells. Unexpectedly, however, in the presence of Ki16425, ascites and(More)
G protein-coupled receptor 4 (GPR4), previously proposed as the receptor for sphingosylphosphorylcholine, has recently been identified as the proton-sensing G protein-coupled receptor (GPCR) coupling to multiple intracellular signaling pathways, including the Gs protein/cAMP and G13 protein/Rho. In the present study, we characterized some imidazopyridine(More)
Oxidatively damaged proteins and lipid peroxidation products have been shown to accumulate in the brain of neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis, and oxidized lipoprotein is considered to be toxic and neurodegenerative. However, the role of lipoprotein and its oxidized form in neurite remodeling has not been well(More)
We have developed a mouse model of intracranial aneurysm that recapitulates key features of human intracranial aneurysms. In this model, spontaneous aneurysmal rupture occurs with a predictable time course. Aneurysmal rupture in this model can be easily detected by assessing neurological symptoms. Similar to human intracranial aneurysms, intracranial(More)
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent stem or stromal cells found in multiple tissues. Intravenous MSC injections have been used to treat various diseases with an inflammatory component in animals and humans. Inflammation is emerging as a key component of pathophysiology of intracranial aneurysms. Modulation of inflammation by MSCs may(More)
  • 1