Learn More
Oxidative stress plays a pivotal role in chronic heart failure. SIRT1, an NAD(+)-dependent histone/protein deacetylase, promotes cell survival under oxidative stress when it is expressed in the nucleus. However, adult cardiomyocytes predominantly express SIRT1 in the cytoplasm, and its function has not been elucidated. The purpose of this study was to(More)
Although protein kinase C (PKC) plays a key role in ischemic preconditioning (IPC), the actual mechanism of that protection is unknown. We recently found that protection from IPC requires activation of adenosine receptors during early reperfusion. We, therefore, hypothesized that PKC might act to increase the heart's sensitivity to adenosine. IPC limited(More)
RATIONALE The diabetic heart is resistant to ischemic preconditioning because of diabetes-associated impairment of phosphatidylinositol 3-kinase (PI3K)-Akt signaling. The mechanism by which PI3K-Akt signaling is impaired by diabetes remains unclear. OBJECTIVE Here, we examined the hypothesis that phosphorylation of Jak2 upstream of PI3K is impaired in(More)
Excessive reactive oxygen species (ROS) induce apoptosis and are associated with various diseases and with aging. SIRT1 (sirtuin-1), an NAD+-dependent protein deacetylase, decreases ROS levels and participates in cell survival under oxidative stress conditions. SIRT1 modulates the transcription factors p53, a tumor suppressor and inducer of apoptosis, and(More)
The aim of the present study was to examine the hypothesis that acceleration of gap junction (GJ) closure during ischemia contributes to anti-infarct tolerance afforded by preconditioning (PC). First, the effects of PC on GJ communication during ischemia were assessed. Isolated buffer-perfused rabbit hearts were subjected to 5-min global ischemia with or(More)
Xylanases hydrolyse the beta-1,4-glycosidic bonds within the xylan backbone and belong to either family 10 or 11 of the glycoside hydrolases, on the basis of the amino acid sequence similarities of their catalytic domains. Generally, xylanases have a core catalytic domain, an N and/or C-terminal substrate-binding domain and a linker region. Until now, X-ray(More)
Glycans have important roles in living organisms with their structural diversity. Thus, glycomics, especially aspects involving the assignment of functional glycans in a high-throughput manner, has been an emerging field in the postproteomics era. To date, however, there has been no versatile method for glycan profiling. Here we describe a new microarray(More)
The specific delta-opioid receptor agonist [D-Ala(2)-D-Leu(5)]enkephalin (DADLE) protects against infarction in the heart when given before ischemia. In rabbit, this protection leads to phosphorylation of the pro-survival kinases Akt and extracellular signal-regulated kinase (ERK) and is dependent on transactivation of the epidermal growth factor receptor(More)
We previously reported that pharmacological preconditioning of rabbit hearts with acetylcholine involves activation of phosphatidylinositol 3-kinase (PI3-K) through transactivation of the epidermal growth factor receptor (EGFR). Transactivation is thought to be initiated by cleavage of membrane-bound pro-heparin-binding EGF-like growth factor (HB-EGF) by a(More)
An exo-beta-1,3-galactanase gene from Phanerochaete chrysosporium has been cloned, sequenced, and expressed in Pichia pastoris. The complete amino acid sequence of the exo-beta-1,3-galactanase indicated that the enzyme consists of an N-terminal catalytic module with similarity to glycoside hydrolase family 43 and an additional unknown functional domain(More)