Learn More
Semaphorins, originally identified as axon guidance facto s in the nervous system, play integral roles in organogenesis. Here, we demonstrate a critical involvement of Sema6D in cardiac morphogenesis. Ectopic expression of Sema6D o RNA interference against Sema6D induces expansion or narrowing of the ventricular chamber, respectively, during chick embryonic(More)
We have identified the lymphocyte semaphorin CD100/Sema4D as a CD40-inducible molecule by subtractive cDNA cloning. CD100 stimulation significantly enhanced the effects of CD40 on B cell responses. Administration of soluble CD100 markedly accelerated in vivo antigen-specific antibody responses. CD100 receptors with different binding affinities were detected(More)
gp130 is a ubiquitously expressed signal-transducing receptor component shared by interleukin 6, interleukin 11, leukemia inhibitory factor, oncostatin M, ciliary neurotrophic factor, and cardiotrophin 1. To investigate physiological roles of gp130 and to examine pathological consequences of a lack of gp130, mice deficient for gp130 have been prepared.(More)
Semaphorins are a family of phylogenetically conserved soluble and transmembrane proteins. Although many soluble semaphorins deliver guidance cues to migrating axons during neuronal development, some members are involved in immune responses. For example, CD100 (also known as Sema4D), a class IV transmembrane semaphorin, signals through CD72 to effect(More)
Cardiac chamber formation involves dynamic changes in myocardial organization, including trabeculation and expansion of the compact layer. The positional cues that regulate myocardial patterning, however, remain unclear. Through ligation of the Plexin-A1 receptor, the transmembrane-type semaphorin Sema6D regulates endocardial cell migration. Here, we(More)
Sema3A, a prototypical semaphorin, acts as a chemorepellent or a chemoattractant for axons by activating a receptor complex comprising neuropilin-1 as the ligand-binding subunit and plexin-A1 as the signal-transducing subunit. How the signals downstream of plexin-A1 are triggered upon Sema3A stimulation, however, is unknown. Here we show that, in the(More)
The class IV semaphorin CD100/Sema4D differentially utilizes two distinct receptors: plexin-B1 in nonlymphoid tissues, such as brain and kidney, and CD72 in lymphoid tissues. We have generated CD100-deficient mice and demonstrated that they have functional defects in their immune system, without apparent abnormalities in other tissues. The number of CD5(+)(More)
Semaphorins are axon guidance factors that assist growing axons in finding appropriate targets and forming synapses. Emerging evidence suggests that semaphorins are involved not only in embryonic development but also in immune responses. Semaphorin 7A (Sema7A; also known as CD108), which is a glycosylphosphatidylinositol-anchored semaphorin, promotes axon(More)
Semaphorins are a family of secreted and membrane-bound proteins, known to regulate axonal pathfinding. Sema4D, also called CD100, was first isolated in the immune system where it is involved in B and T cell activation. We found that in the mouse, Sema4D is expressed in cells throughout the CNS white matter, with a peak during the myelination period.(More)
Semaphorins and their receptors have diverse functions in axon guidance, organogenesis, vascularization and/or angiogenesis, oncogenesis and regulation of immune responses. The primary receptors for semaphorins are members of the plexin family. In particular, plexin-A1, together with ligand-binding neuropilins, transduces repulsive axon guidance signals for(More)