Learn More
Runx3/Pebp2alphaC null mouse gastric mucosa exhibits hyperplasias due to stimulated proliferation and suppressed apoptosis in epithelial cells, and the cells are resistant to growth-inhibitory and apoptosis-inducing action of TGF-beta, indicating that Runx3 is a major growth regulator of gastric epithelial cells. Between 45% and 60% of human gastric cancer(More)
Loss of imprinting (LOI) of the insulin-like growth factor II gene (IGF2) is an epigenetic alteration that results in a modest increase in IGF2 expression, and it is present in the normal colonic mucosa of about 30% of patients with colorectal cancer. To investigate its role in intestinal tumorigenesis, we created a mouse model of Igf2 LOI by crossing(More)
Aberrant methylations in human gastric cancers were searched for by a genome scanning technique, methylation-sensitive representational difference analysis. Nine CpG islands (CGIs) in the 5؅ regions of nine genes, LOX, HRASLS, bA305P22.2.3, FLNc (␥-filamin/ABPL), HAND1, a homo-logue of RIKEN 2210016F16, FLJ32130, PGAR (HFARP/ANGPTL4/ ARP4), and(More)
Epigenetic alterations in cancer occur at least as commonly as genetic mutations, but epigenetic alterations could occur secondarily to the tumor process itself. To establish a causal role of epigenetic changes, investigators have turned to genetically engineered mouse models. Here, we review a recent study showing that a mouse model of loss of imprinting(More)
The unmethylated or methylated status of individual CpG sites is faithfully copied into daughter cells. Here, we analyzed the fidelity in replicating their methylation statuses in cancer cells. A single cell was clonally expanded, and methylation statuses of individual CpG sites were determined for an average of 12.5 DNA molecules obtained from the expanded(More)
Small cell lung cancer (SCLC) is a subtype of lung cancer with poor prognosis. Expression array analysis of 23 SCLC cases and 42 normal tissues revealed that EZH2 and other PRC2 members were highly expressed in SCLC. ChIP-seq for H3K27me3 suggested that genes with H3K27me3(+) in SCLC were extended not only to PRC2-target genes in ES cells but also to other(More)
Cellular senescence involves epigenetic alteration, e.g. loss of H3K27me3 in Ink4a-Arf locus. Using mouse embryonic fibroblast (MEF), we here analyzed transcription and epigenetic alteration during Ras-induced senescence on genome-wide scale by chromatin immunoprecipitation (ChIP)-sequencing and microarray. Bmp2 was the most activated secreted factor with(More)
Aberrant DNA methylation is a common epigenetic alteration involved in colorectal cancer (CRC). In our previous study, we performed methylated DNA immunoprecipitation-on-chip analysis combined with gene re-expression analysis by 5-aza-2'-deoxycytidine treatment, to identify methylation genes in CRC genome widely. Among these genes, 12 genes showed aberrant(More)
Cancer arises through accumulation of epigenetic and genetic alteration. Aberrant promoter methylation is a common epigenetic mechanism of gene silencing in cancer cells. We here performed genome-wide analysis of DNA methylation of promoter regions by Infinium HumanMethylation27 BeadChip, using 14 clinical papillary thyroid cancer samples and 10 normal(More)
FUSE-binding protein (FBP)-interacting repressor (FIR) is a c-myc transcriptional suppressor. A splice variant of FIR that lacks exon 2 in the transcriptional repressor domain (FIRΔexon2) upregulates c-myc transcription by inactivating wild-type FIR. The ratio of FIRΔexon2/FIR mRNA was increased in human colorectal cancer and hepatocellular carcinoma(More)