Atsushi Intoh

Learn More
Embryonic stem cells (ESCs) are established from the inner cell mass of preimplantation embryos, are capable of self-renewal, and exhibit pluripotency. Given these unique properties, ESCs are expected to have therapeutic potential in regenerative medicine and as a powerful tool for in vitro differentiation studies of stem cells. Various growth factors and(More)
Pluripotent stem cells have been shown to have unique nuclear properties, for example, hyperdynamic chromatin and large, condensed nucleoli. However, the contribution of the latter unique nucleolar character to pluripotency has not been well understood. Here, we show that fibrillarin (FBL), a critical methyltransferase for ribosomal RNA (rRNA) processing in(More)
The establishment of efficient methods for promoting stem cell differentiation into target cells is important not only in regenerative medicine, but also in drug discovery. In addition to embryonic stem (ES) cells and various somatic stem cells, such as mesenchymal stem cells derived from bone marrow, adipose tissue, and umbilical cord blood, a novel(More)
Comprehensive proteomic analyses necessitate efficient separation of peptide mixtures for the subsequent identification of proteins by mass spectrometry (MS). However, digestion of proteins extracted from cells and tissues often yields complex peptide mixtures that confound direct comprehensive MS analysis. This study investigated a zwitterionic hydrophilic(More)
BACKGROUND The pluripotent state of embryonic stem (ES) cells is controlled by a network of specific transcription factors. Recent studies also suggested the significant contribution of mitochondria on the regulation of pluripotent stem cells. However, the molecules involved in these regulations are still unknown. METHODOLOGY/PRINCIPAL FINDINGS In this(More)
Mammalian pluripotent stem cells possess properties of self-renewal and pluripotency. These abilities are maintained by the strict regulation of pluripotent stem cell-specific transcription factor network and unique properties of chromatin in the stem cells. Although these major signaling pathways robustly control the characteristics of stem cells, other(More)
Embryonic stem cells (ESCs) are established from the inner cell mass of a preimplantation embryo, are capable of self-renewal, and exhibit pluripotency. Given these unique properties, ESCs are expected to have therapeutic potential in regenerative medicine and as a powerful tool for invitro differentiation studies of stem cells. Various growth factors and(More)
  • 1