Atsushi Higashitani

Learn More
BACKGROUND Ligand-induced proteolytic cleavage and internalization of the plasma membrane receptor Notch leads to its activation. Ligand-independent, steady-state internalization of Notch, however, does not lead to activation. The mechanism by which downstream effectors discriminate between these bipartite modes of Notch internalization is not understood.(More)
High-temperature stress causes abortive male reproductive development in many plant species. Here, we report a putative mechanism of high-temperature injury during anther early development in barley plants (Hordeum vulgare L). Under high-temperature conditions (30°C day/25°C night), cell-proliferation arrest, increased vacuolization, over-development of(More)
Roots display hydrotropism in response to moisture gradients, which is thought to be important for controlling their growth orientation, obtaining water, and establishing their stand in the terrestrial environment. However, the molecular mechanism underlying hydrotropism remains unknown. Here, we report that roots of the Arabidopsis mutant mizu-kussei1(More)
Plant male reproductive development is highly organized and sensitive to various environmental stressors, including high temperature. We have established an experimental procedure to evaluate high temperature injury in japonica rice plants. High temperature treatment (39 degrees C/30 degrees C) starting at the microspore stage repeatedly reduced spikelet(More)
A recA-like gene was identified in the Caenorhabditis elegans genome project database. The putative product of the gene, termed Ce-rdh-1 (C. elegans RAD51 and DMC1/LIM15 homolog 1), consists of 357 amino acid residues. The predicted amino acid sequence of Ce-rdh-1 showed 46-60% identity to both RAD51 type and DMC1/LIM15 type genes in several eukaryote(More)
In response to a moisture gradient, roots exhibit hydrotropism to control the orientation of their growth. To exhibit hydrotropism, however, they must overcome the gravitropism that is dominant on Earth. We found that moisture gradient or water stress caused immediate degradation of the starch anchors, amyloplasts, in root columella cells of Arabidopsis and(More)
Sensitivity of meiotic cells to DNA damaging agents is little understood. We have demonstrated that the meiotic pachytene nuclei in the Caenorhabditis elegans gonad are hyper-resistant to X-ray irradiation, but not to UV irradiation, whereas the early embryonic cells after fertilization and the full grown oocytes are not. The Ce-rdh-1 gene [RAD51, DMC1(More)
The molecular mechanisms underlying muscle atrophy during spaceflight are not well understood. We have analyzed the effects of a 10-day spaceflight on Caenorhabditis elegans muscle development. DNA microarray, real-time quantitative PCR, and quantitative western blot analyses revealed that the amount of MHC in both body-wall and pharyngeal muscle decrease(More)
The development of the inflorescence, microspores and anthesis were well synchronized among individuals or in the panicles of barley under controlled environmental conditions. To study the effects of high-temperature stress on the development of pollen mother cells (PMCs) and microspores, the plants were subjected to high temperature treatment at different(More)
Mesocotyl elongation is an important trait for seedling emergence in direct-seeding cultivation in rice. In this study, a backcross inbred line (BIL) population from a cross between Kasalath and Nipponbare was employed to map quantitative trait loci (QTLs) for mesocotyl elongation. A total of 5 QTLs for mesocotyl length were identified on chromosomes 1, 3,(More)