Atsuo Maruyama

Learn More
BACKGROUND It has recently been reported that unilateral fatiguing exercise affects not only the motor area innervating the exercising muscle but also the ipsilateral motor area innervating homologous nonexercised muscle. OBJECTIVE This study was designed to clarify the effects of fatiguing intermittent lower limb exercise on the excitability of the motor(More)
Transcranial magnetic stimulation (TMS) can produce effects not only at the site of stimulation but also at distant sites to which it projects. Here we examined the connection between supplementary motor area (SMA) and the hand area of the primary motor cortex (M1(Hand)) by testing whether prolonged repetitive TMS (rTMS) over the SMA can produce changes in(More)
OBJECTIVE Central fatigue is the inability of central commands to recruit maximum evocable muscle force during voluntary contraction. Here, we investigate how fatigue affects the inhibitory circuits of the motor cortex. METHODS MEPs, short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were evaluated using a paired pulse(More)
The effect of bicarbonate ingestion on total excess volume of CO2 Output (CO2 excess), due to bicaronate buffering of lactic acid in exercise, was studied in eight healthy male volunteers during incremental exercise on a cycle ergometer performed after ingestion (0.3 g · kg−1 body mass) of CaCO3 (control) and NaHCO3 (alkalosis). The resting arterialized(More)
OBJECTIVE This study was designed to examine whether exhaustive grip exercise of the left hand affected intracortical excitability in ipsilateral motor cortex. METHODS Ten healthy male subjects (aged 21-24 years) participated in experiment 1 in which paired-pulse transcranial magnetic stimulation (TMS) was used to test corticospinal and corticocortical(More)
Athletic training is known to induce neuroplastic alterations in specific somatosensory circuits, which are reflected by changes in short-latency somatosensory-evoked potentials (SEPs). The aim of this study is to clarify whether specific training in athletes affects the long-latency SEPs related to information processing of stimulation. The long-latency(More)
Athletic training is known to induce neuroplastic alterations in specific somatosensory circuits, which are reflected by changes in somatosensory evoked potentials and event-related potentials. The aim of this study was to clarify whether specific athletic training also affects somatosensory Nogo potentials related to the inhibition of movements. The Nogo(More)
To determine the predictability of blood lactate accumulation from excess CO2 output derived from bicarbonate buffering of lactic acid during constant exercise, eight normal active volunteers were studied during three stages of constant exercise on a cycle ergometer. Three work rates consisted of 100% (stage I), 120% (stage II) and 150% (stage III) of each(More)
Reciprocal inhibition of antagonist muscles is crucial for motor skill learning in humans. However, the changes in reciprocal inhibition function during the motor learning process are unknown. The aim of this study was to systematically observe the changes in reciprocal inhibition function. We investigated the optimal coil position for simultaneously(More)
Water immersion is widely used in physiotherapy and may even improve the functional outcomes of hemiplegic patients after stroke. To investigate the cortical responses to water immersion, functional near-infrared spectroscopy (fNIRS) was used to measure cortical activations in the primary somatosensory area (S1), parietal association area (PAA),(More)