Learn More
GABA is the principal inhibitory neurotransmitter in the mature brain, but during early postnatal development the elevated [Cl(-)](i) in immature neocortical neurones causes GABA(A) receptor activation to be depolarizing. The molecular mechanisms underlying this intracellular Cl(-) accumulation remain controversial. Therefore, the GABA reversal potential(More)
After axotomy, application of muscimol, a GABA(A) receptor agonist, induced an increase in intracellular Ca(2+) ([Ca(2+)](i)) in dorsal motor neurons of the vagus (DMV neurons). Elevation of [Ca(2+)](i) by muscimol was blocked by bicuculline, tetrodotoxin, and Ni(2+). In axotomized DMV neurons measured with gramicidin perforated-patch recordings, reversal(More)
We investigated the expressions of KCC1, KCC2 and NKCC1 mRNAs in the developing rat brain. The neuroepithelium showed abundant KCC1 and NKCC1 mRNA expressions, while KCC2 mRNA was not detected there. In contrast, KCC2 mRNA was preferentially expressed in postmitotic mature neurons. These results suggest that the appearance of KCC2 expression mainly depends(More)
It is known that GABA, a major inhibitory transmitter in the CNS, acts as an excitatory (or depolarizing) transmitter transiently after intense GABAA receptor activation in adult brains. The depolarizing effect is considered to be dependent on two GABAA receptor-permeable anions, chloride (Cl-) and bicarbonate (HCO3-). However, little is known about their(More)
Cation-chloride cotransporters have been considered to play pivotal roles in controlling intracellular and extracellular ionic environments of neurons and hence controlling neuronal function. We investigated the total distributions of K-Cl cotransporter 1 (KCC1), KCC2 (KCC2), and Na-K-2Cl cotransporter 1 (NKCC1) messenger RNAs in the adult rat nervous(More)
GABA, a major inhibitory neurotransmitter in the adult CNS, is excitatory at early developmental stages as a result of the elevated intracellular Cl- concentration ([Cl-]i). This functional switch is primarily attributable to the K+-Cl- co-transporter KCC2, the expression of which is developmentally regulated in neurons. Previously, we reported that KCC2(More)
Glycinergic membrane responses have been described in cortical plate neurons (CPn) and Cajal-Retzius cells (CRc) during early neocortical development. In order to elucidate the functional properties and molecular identity of glycine receptors in these two neuronal cell types, we performed whole-cell patch-clamp recordings and subsequent single-cell(More)
The mechanism by which sex steroids rapidly modulate the excitability of neurons was investigated by intracellular recording of neurons in rat medial amygdala brain slices. Brief hyperpolarization and increased potassium conductance were produced by 17 beta-estradiol. This effect persisted after elimination of synaptic input and after suppression of protein(More)
Neuronal circuits in the cerebral cortex consist mainly of glutamatergic/excitatory and GABAergic/inhibitory neurons. In the visual cortex, the binocular responsiveness of neurons is modified by monocular visual deprivation during the critical period of postnatal development. Although GABAergic neurons are considered to play a key role in the expression of(More)
To clarify the changes that occur in gamma-aminobutyric acid type A (GABA(A)) receptor-mediated effects and contribute to alterations in the network activities after neuronal injury, we studied intracellular Ca(2+) concentration ([Ca(2+)](i)) dynamics in a rat facial-nerve-transection model. In facial motoneurons, an elevation of the resting [Ca(2+)](i),(More)