Atsunori Kashiwagi

Learn More
We conducted a genome-wide association study using 207,097 SNP markers in Japanese individuals with type 2 diabetes and unrelated controls, and identified KCNQ1 (potassium voltage-gated channel, KQT-like subfamily, member 1) to be a strong candidate for conferring susceptibility to type 2 diabetes. We detected consistent association of a SNP in KCNQ1(More)
We carried out a multistage genome-wide association study of type 2 diabetes mellitus in Japanese individuals, with a total of 1,612 cases and 1,424 controls and 100,000 SNPs. The most significant association was obtained with SNPs in KCNQ1, and dense mapping within the gene revealed that rs2237892 in intron 15 showed the lowest Pvalue (6.7 x 10(-13), odds(More)
UNLABELLED In 1995, the Japan Diabetes Society (JDS) appointed the Committee for the Classification and Diagnosis of Diabetes Mellitus. The Committee presented a final report in May 1999 in Japanese. This is the English version with minor modifications for readers outside Japan. CONCEPT OF DIABETES MELLITUS Diabetes mellitus represents a group of diseases(More)
OBJECTIVE Recently, several genes have been shown to be associated with an increased risk of type 2 diabetes by genome-wide association studies in white populations. To further investigate the involvement of these polymorphisms in conferring susceptibility to type 2 diabetes, we examined the association of 14 single nucleotide polymorphisms (SNPs) within 11(More)
In 1999, the Japan Diabetes Society (JDS) launched the previous version of the diagnostic criteria of diabetes mellitus, in which JDS took initiative in adopting glycated hemoglobin (HbA1c) as an adjunct to the diagnosis of diabetes. In contrast, in 2009 the International Expert Committee composed of the members of the American Diabetes Association (ADA)(More)
AKT was originally identified as a proto-oncogene with a pleckstrin homology and Ser/Thr protein kinase domains. Recent studies revealed that AKT regulates a variety of cellular functions including cell survival, cell growth, cell differentiation, cell cycle progression, transcription, translation, and cellular metabolism. To clarify the substrate(More)
We conducted a genome-wide association study of type 2 diabetes (T2D) using 459,359 SNPs in a Japanese population with a three-stage study design (stage 1, 4,470 cases and 3,071 controls; stage 2, 2,886 cases and 3,087 controls; stage 3, 3,622 cases and 2,356 controls). We identified new associations in UBE2E2 on chromosome 3 and in C2CD4A-C2CD4B on(More)
It has been suggested that genetic susceptibility plays an important role in the pathogenesis of diabetic nephropathy. A large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs) in Japanese patients with type 2 diabetes identified the gene encoding acetyl-coenzyme A carboxylase beta (ACACB) as a candidate for a susceptibility to(More)
Mitochondrial oxidative damage is a basic mechanism of aging, and multiple studies demonstrate that this process is attenuated by calorie restriction (CR). However, the molecular mechanism that underlies the beneficial effect of CR on mitochondrial dysfunction is unclear. Here, we investigated in mice the mechanisms underlying CR-mediated protection against(More)
Early diabetic nephropathy is characterized by renal hypertrophy that is mainly due to proximal tubular hypertrophy. Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase, and its signaling has been reported to regulate protein synthesis and cellular growth, specifically, hypertrophy. Therefore, we examined the effect of mTOR signaling(More)