Learn More
Although studies in animals and patients have demonstrated that brain oscillations play a role in declarative memory encoding and retrieval, little has been done to investigate the temporal dynamics and sources of brain activity in healthy human subjects performing such tasks. In a magnetoencephalography study using pictorial stimuli, we have now identified(More)
Retrieval of recently acquired declarative memories depends on the hippocampus, but with time, retrieval is increasingly sustainable by neocortical representations alone. This process has been conceptualized as system-level consolidation. Using functional magnetic resonance imaging, we assessed over the course of three months how consolidation affects the(More)
The standard model of system-level consolidation posits that the hippocampus is part of a retrieval network for recent memories. According to this theory, the memories are gradually transferred to neocortical circuits with consolidation, where the connections within this circuit grow stronger and reorganized so that redundant and/or contextual details may(More)
"System-level memory consolidation theory" posits that the hippocampus an initially links the neocortical representations, followed by a shift to a hippocampus-independent neocortical network. With consolidation, an increase in activity in the human subgenual ventromedial prefrontal cortex (vmPFC) has repeatedly been shown. Previously we and others have(More)
Although human gamma activity (30-80 Hz) associated with visual processing is often reported, it is not clear to what extend gamma activity can be reliably detected non-invasively from frontal areas during complex cognitive tasks such as long term memory (LTM) formation. We conducted a memory experiment composed of 35 blocks each having three parts: LTM(More)
Information that is congruent with prior knowledge is generally remembered better than incongruent information. This effect of congruency on memory has been attributed to a facilitatory influence of activated schemas on memory encoding and consolidation processes, and hypothesised to reflect a shift between processing in medial temporal lobes (MTL) towards(More)
It is becoming increasingly clear that demanding cognitive tasks rely on an extended network engaging task-relevant areas and, importantly, disengaging task-irrelevant areas. Given that alpha activity (8-12 Hz) has been shown to reflect the disengagement of task-irrelevant regions in attention and working memory tasks, we here ask if alpha activity plays a(More)
Friendships form one of the most proximal contexts with a critical role in mental health and social and psychological development. Yet, the neurobiological basis of this crucial developmental factor is largely uninvestigated. In this study, we tested the hypothesis that the interaction with friends is associated with specific activity increases in brain(More)
Spaced learning with time to consolidate leads to more stabile memory traces. However, little is known about the neural correlates of trace stabilization, especially in humans. The present fMRI study contrasted retrieval activity of two well-learned sets of face-location associations, one learned in a massed style and tested on the day of learning (i.e.,(More)
The complementary learning systems account of declarative memory suggests two distinct memory networks, a fast-mapping, episodic system involving the hippocampus, and a slower semantic memory system distributed across the neocortex in which new information is gradually integrated with existing representations. In this study, we investigated the extent to(More)