Atsuko Takamatsu

Learn More
Determination of left-right asymmetry in mouse embryos is achieved by a leftward fluid flow (nodal flow) in the node cavity that is generated by clockwise rotational movement of 200-300 cilia in the node. The precise action of nodal flow and how much flow input is required for the robust read-out of left-right determination remains unknown. Here we show(More)
The spatial and temporal periodicity of somite formation is controlled by the segmentation clock, in which numerous cells cyclically express hairy-related transcriptional repressors with a posterior-to-anterior phase delay, creating 'traveling waves' of her1 expression. In zebrafish, the first traveling wave buds off from the synchronous oscillation zone in(More)
Traffic optimization of railroad networks was considered using an algorithm that was biologically inspired by an amoeba-like organism, plasmodium of the true slime mold, Physarum polycephalum. The organism developed a transportation network consisting of a tubular structure to transport protoplasm. It was reported that plasmodium can find the shortest path(More)
In this paper, we propose designing transportation network topology and traffic distribution under fluctuating conditions using a bio-inspired algorithm. The algorithm is inspired by the adaptive behavior observed in an amoeba-like organism, plasmodial slime mold, more formally known as plasmodium of Physarum plycephalum. This organism forms a(More)
To reveal the relation between network structures found in two-dimensional biological systems, such as protoplasmic tube networks in the plasmodium of true slime mold, and spatiotemporal oscillation patterns emerged on the networks, we constructed coupled phase oscillators on weighted planar networks and investigated their dynamics. Results showed that the(More)
Plasmodium of true slime mold, Physarum polycephalum, is an amoeboid organism , which spreads with developing tubular network structure and crawls on two-dimensional plane with oscillating the cell thickness. The plasmodium transforms its tubular network structure to adapt to the environment. To reveal the effect of the network structure on the oscillating(More)
Rotational movement of isolated single cilia in mice embryo was investigated, which generates leftward fluid flow in the node cavity and plays an important role in left-right determination. The leftward unidirectional flow results from tilting of the rotational axis of the cilium to the posterior side. By combining computational fluid dynamics with(More)
Rotational movement of mouse node cilia generates leftward fluid flow in the node cavity, playing an important role in left-right determination in the embryo. Although rotation of numerous cilia was believed necessary to trigger the determination, recent reports indicate the action of two cilia to be sufficient. We examine cooperative cilia movement via(More)
  • 1