Athena Jalalian

  • Citations Per Year
Learn More
BACKGROUND Biomechanical computer models of the spine have important roles in the treatment and correction of scoliosis by providing predictive information for surgeons and other clinicians. OBJECTIVES This article reviews computational models of intact and scoliotic spine and its components; vertebra, intervertebral disc, ligament, facet joints, and(More)
Load–displacement relationships of spinal motion segments are crucial factors in characterizing the stiffness of scoliotic spine models to mimic the spine responses to loads. Although nonlinear approach to approximation of the relationships can be superior to linear ones, little mention has been made to deriving personalized nonlinear load–displacement(More)
In multi-body models of scoliotic spine, personalization of mechanical properties of joints significantly improves reconstruction of the spine shape. In personalization methods based on lateral bending test, simulation of bending positions is an essential step. To simulate, a force is exerted on the spine model in the erect position. The line of action of(More)
  • 1