Athanasios N. Papadopoulos

Learn More
OBJECTIVE Detection and characterization of microcalcification clusters in mammograms is vital in daily clinical practice. The scope of this work is to present a novel computer-based automated method for the characterization of microcalcification clusters in digitized mammograms. METHODS AND MATERIAL The proposed method has been implemented in three(More)
In this work, the effect of an image enhancement processing stage and the parameter tuning of a computer-aided detection (CAD) system for the detection of microcalcifications in mammograms is assessed. Five (5) image enhancement algorithms were tested introducing the contrast-limited adaptive histogram equalization (CLAHE), the local range modification(More)
A hybrid intelligent system is presented for the identification of microcalcification clusters in digital mammograms. The proposed method is based on a three-step procedure: (a) preprocessing and segmentation, (b) regions of interest (ROI) specification, and (c) feature extraction and classification. The reduction of false positive cases is performed using(More)
The CHRONIOUS system offers an integrated platform aiming at the effective management and real-time assessment of the health status of the patient suffering from chronic obstructive pulmonary disease (COPD). An intelligent system is developed for the analysis and the real-time evaluation of patient's condition. A hybrid classifier has been implemented on a(More)
The CHRONIOUS system addresses a smart wearable platform, based on multi-parametric sensor data processing, for monitoring people suffering from chronic diseases in long-stay setting. Several signals are being recorded through wearable sensors and are stored together with additional information, entered by the patient. An Intelligent System, placed at a(More)
  • 1