Athanasios I. Drosopoulos

Learn More
Facial expression and hand gesture analysis plays a fundamental part in emotionally rich man-machine interaction (MMI) systems, since it employs universally accepted non-verbal cues to estimate the users’ emotional state. In this paper, we present a systematic approach to extracting expression related features from image sequences and inferring an emotional(More)
Present work introduces a probabilistic recognition scheme for hand gestures. Self organizing feature maps are used to model spatiotemporal information extracted through image processing. Two models are built for each gesture category and, along with appropriate distance metrics, produce a validated classification mechanism that performs consistently during(More)
In this paper a modular approach of gradual confidence for facial feature extraction over real video frames is presented. The problem is being dealt under general imaging conditions and soft presumptions. The proposed methodology copes with large variations in the appearance of diverse subjects, as well as of the same subject in various instances within(More)
Present work introduces a probabilistic recognition scheme for hand gestures. Self organizing feature maps are used to model spatiotemporal information extracted through image processing. Two models are built for each gesture category and, along with appropriate distance metrics, produce a validated classification mechanism that performs consistently during(More)
Optical tracking systems have become particularly popular in virtual studios applications tending to substitute electromechanical ones. However, optical systems are reported to be inferior in terms of accuracy in camera motion estimation. Moreover, marker-based approaches often cause problems in image/video compositing and impose undesirable constraints on(More)
Over the past few years, virtual studios applications have significantly attracted the attention of the entertainment in­ dustry. Optical tracking systems for virtual sets produc­ tion have become particularly popular tending to substitute electro-mechanical ones. In this work, an existing optical tracking system [IJ is revisited, in order to tackle with(More)
Emotionally-aware Man-Machine Interaction (MMI) systems are presently at the forefront of interest of the computer vision and artificial intelligence communities, since they give the opportunity to less technology-aware people to use computers more efficiently, overcoming fears and preconceptions. Most emotion-related facial and body gestures are considered(More)
An adaptive, invariant to user performance fluctuation or noisy input signal, gesture recognition scheme is presented based on Self Organizing Maps, Markov Models and Levenshtein sequence distance. Multiple modalities, all based on the hand position during gesturing, train different classifiers which are then fused in a weak classifier boosting-like setup(More)
Gesture and Speech based human Computer interaction is attractive attention across various areas such as pattern recognition, computer vision. Thus kind of research areas find many kind of application in Multimodal HCI, Robotics control, Sign language recognition. This paper presents head and hand Gesture as well as Speech recognition system for human(More)
This work presents the design and experimental verification of an original system architecture aiming at recognizing gestures based solely on the hand trajectory. Self organizing feature maps are used to model spatial information while Markov models encode the temporal aspect of hand position within a trajectory. A validated classification mechanism is(More)