Athanasia C. Tzika

Learn More
BACKGROUND Reptiles are largely under-represented in comparative genomics despite the fact that they are substantially more diverse in many respects than mammals. Given the high divergence of reptiles from classical model species, next-generation sequencing of their transcriptomes is an approach of choice for gene identification and annotation. RESULTS(More)
BACKGROUND Given the availability of full genome sequences, mapping gene gains, duplications, and losses during evolution should theoretically be straightforward. However, this endeavor suffers from overemphasis on detecting conserved genome features, which in turn has led to sequencing multiple eutherian genomes with low coverage rather than fewer genomes(More)
MOTIVATION Practitioners of comparative genomics face huge analytical challenges as whole genome sequences and functional/expression data accumulate. Furthermore, the field would greatly benefit from a better integration of this wealth of data with evolutionary concepts. RESULTS Here, we present MANTIS, a relational database for the analysis of (i) gains(More)
Recent analyses indicated that genes with larger effect of knockout or mutation and with larger probability to revert to single copy after whole genome duplication are expressed earlier in development. Here, we further investigate whether tissue specificity of gene expression is constrained by the age of origin of the corresponding genes. We use 38 metazoan(More)
The vomeronasal organ (VNO) is an olfactory structure that detects pheromones and environmental cues. It consists of sensory neurons that express evolutionary unrelated groups of transmembrane chemoreceptors. The predominant V1R and V2R receptor repertoires are believed to detect airborne and water-soluble molecules, respectively. It has been suggested that(More)
Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different(More)
Mammals exhibit a remarkable variety of phenotypes and comparative studies using novel model species are needed to uncover the evolutionary developmental mechanisms generating this diversity. Here, we undertake a developmental biology and numerical modeling approach to investigate the development of skin appendages in the spiny mouse, Acomys dimidiatus. We(More)
  • 1