Atefeh Ghorbaniaghdam

Learn More
In this work, a kinetic-metabolic model previously developed for CHO cells is used to study glycolysis regulation. The model is assessed for its biological relevance by analyzing its ability to simulate metabolic events induced following a hypoxic perturbation. Feedback and feedforward regulatory mechanisms known to occur to either inhibit or activate(More)
A kinetic-metabolic model approach describing and simulating Chinese hamster ovary (CHO) cell behavior is presented. The model includes glycolysis, pentose phosphate pathway, TCA cycle, respiratory chain, redox state and energetic metabolism. Growth kinetic is defined as a function of the major precursors for the synthesis of cell building blocks.(More)
Monoclonal antibody producing Chinese hamster ovary (CHO) cells have been shown to undergo metabolic changes when engineered to produce high titers of recombinant proteins. In this work, we have studied the distinct metabolism of CHO cell clones harboring an efficient inducible expression system, based on the cumate gene switch, and displaying different(More)
  • 1