Learn More
The lizard medial cortex (a zone homologous to the mammalian fascia dentata) shows delayed postnatal neurogenesis throughout the lifetime of these animals. Experimental lesioning of this area is followed by neuronal regeneration, a unique phenomenon in the adult amniote telencephalon. The differential effects of temperature and photoperiod on postnatal(More)
Labelled cells were consistently observed in the medial cortex of the lizard brain after i.p. injections of tritiated thymidine (5 microCi/g b. wt.), 1, 7, 18 or 28 days of survival and posterior autoradiographic evaluation. In 3 groups of specimens (postnatal, young and adult) of the species Podarcis hispanica, after one day of survival, labelled cells(More)
Double labelling autoradiography-HRP experiments were performed to examine whether late generated neurons in the medial cortex of lizards develop and send axons to their targets. One to two months after receiving a series of tritiated thymidine ([3H]T) injections to label recently generated neurons, lizards (Podarcis hispanica) were subjected to a HRP(More)
This study reports that lesion of the adult lizard medial cortex (lizard hippocampal fascia dentata) induces a short period of intensive neurogenesis which we have termed reactive neurogenesis; a cell proliferation event that occurs in the subjacent ependyma. Specific lesion of the medial cortex was achieved by intraperitoneal injection of the neurotoxin(More)
Cells considered to be migratory in the cerebral cortex of adult lizards are ultrastructurally of two types. Nuclei in the first type have highly dispersed chromatin, creating a spongy appearance, whereas in the second type the chromatin is irregularly clumped. Both types of cells are closely associated with processes of radial ependymal glia cells, which(More)
Young, adult and presumed old specimens of the tropical lizard Tropidurus hispidus, living in an almost steady warm habitat, have been the subjects of a 5-bromodeoxiuridine immunocytochemical study to label proliferating brain cells. All animals showed abundant 5-bromodeoxiuridine-labeled nuclei in the ependyma of their telencephalic lateral ventricles,(More)
The control of neuritogenesis is crucial for the development, maturation and regeneration of the nervous system. The collapsin response-mediated protein 4 (CRMP-4) is a member of a family of proteins that are involved in neuronal differentiation and axonal outgrowth. In rodents, this protein is expressed in recently generated neurons such as some granule(More)
The cerebral cortex of Squamate reptiles (lizards and snakes) may be regarded as an archicortex or "reptilian hippocampus". In lizards, one cortical area, the medial cortex, may be considered as a true "fascia dentata" on grounds of its anatomy, connectivity and cyto- chemo-architectonics of its main zinc-rich axonal projection. Moreover, its late(More)
Endocytosis is required for many cellular pivotal processes, including membrane recycling, nutrient uptake, and signal transduction. This complex process is particularly relevant in polarized cells, such as neurons. Previous studies have demonstrated that alcohol alters intracellular traffic, including endocytosis, in several cell types. However,(More)
Gold-toned bipyramidal neurons of the dorsomedial cortex of Lacerta have been studied using light and electron microscopy. The spines have been classified as stubby, mushroom-shaped or thin. Thin and mushroom-shaped spines are only found on proximal and intermediate dendritic segments, whereas stubby spines are found on distal dendritic segments. A Timm's(More)